(1) Commutative Law of Addition |
\(A + B = B + A\) |
(2) Associative Law of Addition |
\(A + (B + C) = (A + B) + C\) |
(3) Distributive Law of a Scalar over Matrices |
\(c(A + B) = c A + c B\text{,}\) where \(c \in \mathbb{R}\text{.}\)
|
(4) Distributive Law of Scalars over a Matrix |
\(\left(c_1 + c_2 \right)A = c_1A +c_2 A\text{,}\) where \(c_1, c_2 \in \mathbb{R}\text{.}\)
|
(5) Associative Law of Scalar Multiplication |
\(c_1 \left(c_2 A\right) =\left(c_1 \cdot c_2 \right)A\text{,}\) where \(c_1, c_2 \in \mathbb{R}\text{.}\)
|
(6) Zero Matrix Annihilates all Products |
\(\pmb{0}A = \pmb{0}\text{,}\) where \(\pmb{0}\) is the zero matrix. |
(7) Zero Scalar Annihilates all Products |
\(0 A =\pmb{0}\text{,}\) where 0 on the left is the scalar zero. |
(8) Zero Matrix is an identity for Addition |
\(A + \pmb{0} = A\text{.}\) |
(9) Negation produces additive inverses |
\(A + (-1)A = \pmb{0}\text{.}\) |
(10) Right Distributive Law of Matrix Multiplication |
\((B + C)A = B A + C A\text{.}\) |
(11) Left Distributive Law of Matrix Multiplication |
\(A(B + C) = A B + A C\text{.}\) |
(12) Associative Law of Multiplication |
\(A(B C) = (A B)C\text{.}\) |
(13) Identity Matrix is a Multiplicative Identity |
\(I A = A\) and \(A I = A\text{.}\)
|
(14) Involution Property of Inverses |
If \(A^{-1}\) exists,\(\left(A^{-1} \right)^{-1} = A\text{.}\)
|
(15) Inverse of Product Rule |
If \(A^{-1}\) and \(B^{-1}\) exist, \((A B)^{-1}= B^{-1}A^{-1}\)
|