Skip to main content
Logo image

Section A.1 Exponential and Logarithmic Functions

Recall the following rules for exponential and logarithmic functions.

Exponential Rules.

General Natural (a=e)
E1:
(ab)x=axbx
(eb)x=exbx
E2:
axay=ax+y
exey=ex+y
E3:
(ax)y=axy
(ex)y=exy
E4:
ax=1ax
ex=1ex

Logarithmic Rules.

General Natural (a=e)
L1:
logb(bx)=x
ln(ex)=x
L2:
blogb(x)=x
eln(x)=x
L3:
logb(1)=0
ln(1)=0
L4:
logb(xy)=logb(x)+logb(y)
ln(xy)=ln(x)+ln(y)
L5:
logb(xy)=logb(x)logb(y)
ln(xy)=ln(x)ln(y)
Let’s look at a couple of examples, starting with an equation containing exponentials.

Example A.1.

Solve for x: e3x+zez=y
Solution. Solution
If you prefer to see a video of this example, click here
 9 
www.youtube.com/watch?v=QdZekQ5_T2E
We might begin by isolating the exponential that contains x and then taking the natural log of both sides.
e3x+zez= ye3x+z= y+ezL1ln(e3x+z)= ln(y+ez)3x+z= ln(y+ez)3x= ln(y+ez)zx= 13ln(y+ez)13z
It’s worth noting that we cannot break up that log on the right hand side. There’s no "rule" that helps when we have addition inside a logarithm.
There is another way to approach this if notice that z appears inside both exponential terms.
E2e3x+zez= ye3xezez= yez(e3x1)= ye3x1= yezE4e3x1= yeze3x= yez+1L1ln(e3x)= ln(yez+1)3x= ln(yez+1)x= 13ln(yez+1)
The answers may look different, but they are equivalent and both are correct.
Now let’s look at an example involving logarithms.

Example A.2.

Solve for x: ln(x+y)=5+ln(z)
Solution. Solution
If you prefer to see a video of this example, click here
 10 
www.youtube.com/watch?v=7xG6SisdjYE
We’ll carefully apply the rules above. We want to get our hands on x, and right now its inside a logarithm. In order to undo that, we’ll exponentiate both sides.
ln(x+y)= 5+ln(z)L2eln(x+y)= e(5+ln(z))E2x+y= e5eln(z)L2x= e5zy
Now you should try. Be careful!
Use algebra and the rules above to solve for x in each of the following equations.
  1. ex+y=12
    Solution. Solution
    ex+y= 12ln(ex+y)= ln(12)x+y= ln(12)x= ln(12)y
    Answer. Answer
    x=ln(12)y
  2. ex+y+ex=12
    Solution. Solution
    ex+y+ex= 12exey+ex= 12ex(ey+1)= 12ex= 12ey+1ln(ex)= ln(12ey+1)x= ln(12ey+1),or= ln(12)ln(ey+1)
    Answer. Answer
    x= ln(12ey+1),or= ln(12)ln(ey+1)
  3. ex=1
    Solution. Solution
    ex= 1ln(ex)= ln(1)x= 0
    Answer. Answer
    x=0
  4. lnx=3lnz
    Solution. Solution
    lnx= 3lnzelnx= e3lnzelnx= eln(z3)x= z3
    Answer. Answer
    x=z3
  5. y+lnx=4
    Solution. Solution
    y+lnx= 4lnx= 4yelnx= e4yx= e4y
    Answer. Answer
    x=e4y
  6. lny+lnx=4
    Solution. Solution
    lny+lnx= 4lnx= 4lnyelnx= e4lnyx= e4lny= e4elny= e4eln(y1)= e4y1= e41y= e4y
    Answer. Answer
    x=e4y
  7. lnx=8lny+5
    Solution. Solution
    lnx= 8lny+5elnx= e8lny+5x= e8lnye5= eln(y8)e5= y8e5= e5y8
    Answer. Answer
    x=e5y8

Definition A.3. Euler’s Formula.

eiθ=cos(θ)+isin(θ)
You have attempted 1 of 1 activities on this page.