Skip to main content
Logo image

Subsection 9.2.4 Sine and Cosine, \(\sin(bt),\ \cos(bt)\)

Now, let’s turn to the Laplace transforms of trigonometric functions, which frequently arise in systems involving oscillations or wave equations.

Example 6.

\(\ \ \)\(\lap{\cos(3t)}\text{.}\)
Solution.
We start by applying the definition of the Laplace transform:
\begin{equation*} \lap{ \cos(3t)} = \int_0^{\infty} e^{-st} \cdot \cos(3t)\ dt \text{.} \end{equation*}
Rather than directly integrating, we will use a modified Euler’s Formula to express cosine in terms of \(e\)
\begin{equation*} \cos(3t) = \frac12\left(e^{3it} + e^{-3it}\right). \end{equation*}
Substituting this into the integral gives:
\begin{align*} \lap{ \cos(3t)} =\amp\ \frac12 \int_0^{\infty} e^{-st} \frac12\left(e^{3it} + e^{-3it}\right)\ dt \\ =\amp\ \frac12\left[\int_0^{\infty} e^{-st}\cdot e^{3it}\ dt + \int_0^{\infty} e^{-st}\cdot e^{-3it}\ dt\right]\\ =\amp\ \frac{1}{2} \left[\lap{e^{3it}} + \lap{e^{-3it}}\right]\\ =\amp\ \frac{1}{2} \left[\frac{1}{s - 3i} + \frac{1}{s + 3i}\right] \qquad (\text{by } \knowl{./knowl/xref/L2.html}{\text{\(L_2\)}})\\ =\amp\ \frac{1}{2} \left[\frac{s + 3i + s - 3i}{(s - 3i)(s + 3i)}\right]\\ =\amp\ \frac{s}{s^2 + 9}. \end{align*}
Therefore, the Laplace transform of \(\cos(3t)\) is:
\begin{equation*} \lap{\cos(3t)} = \frac{s}{s^2 + 9}. \end{equation*}
The sine function is handled in a similar way, as the next example shows.

Example 7.

\(\ \ \)\(\lap{\sin(-4t)}\text{.}\)
Solution.
As with cosine, we begin with the definition of the Laplace transform,
\begin{equation*} \lap{ \sin(-4t)} = \int_0^{\infty} e^{-st} \cdot \sin(-4t)\ dt \end{equation*}
and rewrite sine using Euler’s formula,
\begin{equation*} \sin(-4t) = \frac{e^{-4it} - e^{4it}}{2i}. \end{equation*}
Substituting this into the integral, we get:
\begin{align*} \lap{ \sin(-4t)} =\amp \frac{1}{2i} \int_0^{\infty} e^{-st} \left(e^{-4it} - e^{4it}\right)\, dt \\ =\amp \frac{1}{2i} \left[\int_0^{\infty} e^{-(s + 4i)t}\, dt - \int_0^{\infty} e^{-(s - 4i)t}\, dt\right]\\ =\amp \frac{1}{2i} \left[\lap{e^{-4it}} - \lap{e^{4it}}\right].\\ =\amp \frac{1}{2i} \left[\frac{1}{s + 4i} - \frac{1}{s - 4i}\right] \qquad (\text{by } \knowl{./knowl/xref/L2.html}{\text{\(L_2\)}})\\ =\amp \frac{1}{2i} \left[\frac{s - 4i - (s + 4i)}{(s + 4i)(s - 4i)}\right]\\ =\amp \frac{4}{s^2 + 16}. \end{align*}
Thus, the Laplace transform of \(\sin(-4t)\) is:
\begin{equation*} \lap{\sin(-4t)} = \frac{4}{s^2 + 16}. \end{equation*}
Both of these approaches can be generalized to show that the formula for the Laplace transforms of sine and cosine are given as follows:

Common Laplace Transform (Sine, Cosine).

\({\LARGE \vphantom{\int}}L_4\)
\(\ds \lap{\sin(bt)} = \frac{b}{s^2+b^2}, \quad s \gt 0 \)
\({\LARGE \vphantom{\int}}L_5\)
\(\ds \lap{\cos(bt)} = \frac{s}{s^2+b^2}, \quad s \gt 0 \)

Reading Questions Check-Point Questions

1. \(\ds\lap{\sin(t)} = \)\(\ds\frac{\fillinmath{X}}{s^2 + 1}\).

  • \(1\)
  • Correct! The Laplace transform of \(\sin(t)\) is \(\ds\frac{1}{s^2 + 1}\text{.}\)
  • \(s\)
  • No, the correct numerator should be \(1\text{,}\) not \(s\text{.}\)
  • \(b\)
  • No, the correct numerator should be \(1\text{,}\) not \(b\text{.}\)
  • \(s^2\)
  • No, the correct numerator should be \(1\text{,}\) not \(s^2\text{.}\)

2. \(\ds\lap{\cos(-2t)} = \)\(\ds\frac{\fillinmath{X}}{s^2 + 4}\).

  • \(2\)
  • No, try again.
  • \(4\)
  • No, try again.
  • \(s\)
  • Correct! The Laplace transform of \(\cos(-2t)\) is \(\ds\frac{s}{s^2 + 4}\text{.}\)
  • \(2s\)
  • No, try again.

3. \(\ds\lap{\fillinmath{X}} = \)\(\ds\frac{s}{s^2 + \frac14}\).

  • \(\sin\left(\frac12t\right)\)
  • No, try again.
  • \(\cos\left(\frac12t\right)\)
  • No, try again.
  • \(\cos\left(2t\right)\)
  • Correct! The Laplace transform of \(\cos(2t)\) is \(\ds\frac{s}{s^2 + \frac14}\text{.}\)
  • \(\sin\left(2t\right)\)
  • No, try again.

4. \(\ds\lap{\sin(5t)} = \) ?

  • \(\ds\frac{5}{s^2 + 25}\)
  • Correct! The Laplace transform of \(\sin(5t)\) is \(\ds\frac{5}{s^2 + 25}\text{.}\)
  • \(\ds\frac{s}{s^2 + 25}\)
  • Incorrect. This is the Laplace transform of \(\cos(5t)\text{,}\) not \(\sin(5t)\text{.}\)
  • \(\ds\frac{1}{s^2 + 25}\)
  • Incorrect. The correct numerator is \(\ds5\text{,}\) not \(\ds1\text{.}\)
  • \(\ds\frac{5}{s^2 + 5^2}\)
  • Incorrect. While \(\ds25\) is \(\ds5^2\text{,}\) the answer should simplify to \(\ds\frac{5}{s^2 + 25}\text{.}\)

5. \(\ds\lap{\cos(-3t)} = \) ?

  • \(\ds\frac{3}{s^2 + 9}\)
  • Incorrect. The correct numerator should be \(\dss\text{,}\) not \(\ds3\text{.}\)
  • \(\ds\frac{s}{s^2 - 9}\)
  • Incorrect. The denominator should be \(\ds9\text{,}\) not \(\ds-9\text{.}\)
  • \(\ds\frac{s}{s^2 + 9}\)
  • Correct! The Laplace transform of \(\cos(-3t)\) is \(\ds\frac{s}{s^2 + 9}\text{.}\)
  • \(\ds\frac{3}{s^2 - 9}\)
  • Incorrect. The correct numerator should be \(\dss\text{,}\) not \(\ds3\text{.}\)