Skip to main content
Logo image

Section C.5 Laplace Transforms

s=0,e0t=1
= 15limb0b1 dt=15limbt|0b=15limbb=.
s=0,does not exists.
s=0,
= limb0bt dt=limbt22|0b=12limbb2=.
s0
s<0,b,esb
limbb esb=.
s<0.s>0.
b,s1s
b,(7s)negativebe(7s)negativeb0
L{t2}= 0estt2dt=(1)t21sest|001sest2tdt=(2)1s[t2est|020esttdt]=(3)1s[t2est|02L{t}]=(4)1s[limbt2est|0b2L{t}]= 1s[limb(b2esb02es0)21s2]= 1s[limbb2esb02s2]= 1s[limbb2esb2s2]=(5)1s[limb2bsesb2s2]= 1s[2slimbbesb2s2]= 1s[2slimb1sesb2s2]= 1s[2s02s2]= 2s3
L{t3}= 0estt3dt=(1)t31sest|001sest3t2dt=(2)1s[t3est|030estt2dt]=(3)1s[limbt3est|0b3L{t2}]=(4)1s[limb(b3esb03es0)32s3]= 1s[limbb3esb06s3]= 1s[limbb3esb6s3]=(5)1s[limb3b2sesb6s3]= 1s[3slimbb2esb6s3]= 1s[3slimb2bsesb6s3]= 1s[6s2limbbesb6s3]= 1s[6s2limb1sesb6s3]= 1s[6s206s3]= 6s4
L{t4}= 0estt4dt=(1)t41sest|001sest4t3dt=(2)1s[t4est|040estt3dt]=(3)1s[limbt4est|0b4L{t3}]=(4)1s[limb(b4esb04es0)46s4]= 1s[limbb4esb024s4]= 1s[limb4b3sesb24s4]= 1s[4slimbb3esb24s4]=(5)1s[4slimb3b2sesb24s4]= 1s[12s2limbb2esb24s4]= 1s[12s2limb2bsesb24s4]= 1s[24s3limbbesb24s4]= 1s[24s3limb1sesb24s4]= 1s[24s3024s4]= 24s5
Key Steps
=[1]
Integration by parts with u=f(t) and dv=estdt
=[2]
s is a constant in this integral, so we can bring it out.
=[3]
estf(t)=f(t)est must go to zero.
L1.
L{1}=1s,s>0
L2.
L{eat}=1sa,s>a
L3.
L{tn}=n!sn+1,s>0
L4.
L{sin(bt)}=bs2+b2,s>0
L5.
L{cos(bt)}=ss2+b2,s>0
L6.
L{tneat}=n!(sa)n+1,s>a
L7.
L{eatsin(bt)}=b(sa)2+b2,s>a
L8.
L{eatcos(bt)}=sa(sa)2+b2,s>a
L9.
L{af(t)+bg(t)}=aL{f(t)}+bL{g(t)},a,b constant
L10.
L{f(t)}=sF(s)f(0)
L11.
L{f(t)}=s2F(s)sf(0)f(0)
L12.
L{f(n)(t)}=snF(s)sn1f(0)sn2f(0)f(n1)(0)
L13.
L{tnf(t)}=(1)ndndsn(L{tnf(t)})
L14.
L{U(ta)}=eass
L15.
L{f(t)U(ta)}=easL{f(t+a)}
L16.
L{f(ta)U(ta)}=easF(s)

graph of e1.2b vs. e+1.2b.

L14:L{U(ta)}=eassL15:L{f(t)U(ta)}=easL{f(t+a)}L16:L{f(ta)U(ta)}=easF(s)
4s313s2+74s+27= (As+B)(s+1)2+C(s+1)(s26s+25)+D(s26s+25)= (As+B)(s2+2s+1)+(Cs+C)(s26s+25)+Ds26Ds+25D= As3+2As2+As+Bs2+2Bs+B+Cs36Cs2+25Cs+Cs26Cs+25C+Ds26Ds+25D= (A+C)s3+(2A+B6C+C+D)s2+(A+2B+25C6C6D)s+(B+25C+25D)= (A+C)s3+(2A+B5C+D)s2+(A+2B+19C6D)s+(B+25C+25D)
Equating coefficients gives us four equations in four unknowns.
A+C= 42A+B5C+D= 13A+2B+19C6D= 74B+25C+25D= 27A= 4C2(4C)+B5C+D= 13(4C)+2B+19C6D= 74B7C+D= 212B+18C6D= 70B= 7CD212(7CD21)+18C6D= 70(7CD21)+25C+25D= 2732C8D= 11232C+24D= 4832C= 8D+112(8D+112)+24D= 4832D= 64D= 232C= 8(2)+112= 96C= 3B= 7(3)(2)21= 2A= 4(3)= 1
Partial fraction decomposition has the form,
54(s+1)(s24s+13)=As+1+Bs+Cs24s+13,
and we find A, B, and C by
54= A(s24s+13)+(Bs+C)(s+1)54= As24As+13A+Bs2+Bs+Cs+C0s2+0s+54= (A+B)s2+(4A+B+C)s+(13A+C)
A+B= 04A+B+C= 013A+C= 54A= B4(B)+B+C= 013(B)+C= 545B+C= 013B+C= 54C= 5B13B+(5B)= 5418B= 54B= 3A= (3)C= 5(3)= 3= 15
x(t)= 3et3e2tcos(3t)+3e2tsin(3t)= 3et+e2t[3sin(3t)3cos(3t)]x(t)= 3et+e2t[9cos(3t)+9sin(3t)]= 3et+e2t[9cos(3t)+9sin(3t)+6sin(3t)6cos(3t)]= 3et+e2t[3cos(3t)+15sin(3t)]x(t)= 3et+e2t[9sin(3t)+45cos(3t)]= 3et+e2t[9sin(3t)+45cos(3t)+6cos(3t)+30sin(3t)]= 3et+e2t[21sin(3t)+51cos(3t)]
LHS= x4x+13x= (3et+e2t[21sin(3t)+51cos(3t)])= 3et+e2t[21sin(3t)+51cos(3t)]= 3et+e2t[21sin(3t)+51cos(3t)]= 54et= RHS
We also verify the initial conditions:
x(0)= 3e0+e20[3sin(30)3cos(30)]= 3+[3031]= 33= 0x(0)= 3e0+e20[3cos(30)+15sin(30)]= 3+[31+150]= 3+3= 0

L{eat} Details.

Using the definition of the Laplace transform:
L{eat}= 0esteat dt= limb0be(s+a)t dt
For the integral to converge, the exponent s+a must be negative, leading to the condition s>a. Proceeding with the integration:
L{eat}= limb0be(s+a)t dt= limb1ase(s+a)t|0b= 1as[limb(e(as)b1)]= 1as[01]= 1as=1sa.for s>a
Thus, the Laplace transform of eat is:
L{eat}=1sa,s>a.

L{t} Details.

Using the definition of the Laplace transform:
L{t}=limb0bestt dtI
L{t}= limb[bsesb+1s0bestdt]L{t}= 1slimb[besb]+1slimb0best dtL{t}= 1slimbbesbL+1s0est dtL{1}
L’Hopital’s Rule shows L=0 and L{1} is known. Therefore,
L{t}=1s2,s>0.
u=t,dv=estdt,du=dt,v=1sest
0bestt dt= t(1sest)|0b0b(1sest)dt= bsesb+1s0bestdt
bbss>0,
L=limbbesb=LHlimb1sesb=1slimb1esb=0

L{t2} Details.

Using the definition of the Laplace transform:
L{t2}=limb0bestt2 dtI
L{t}= limb[b2sesb+2s0bestt dt]L{t}= 1slimb[b2esb]+2slimb0bestt dtL{t}= 1slimbb2esbL+2s0estt dtL{t}
L’Hopital’s Rule shows L=0 and L{t}=1/s2. Therefore,
L{t2}=2s3,s>0.
u=t2,dv=estdt,du=2t dt,v=1sest
0bestt2 dt= t2(1sest)|0b0b(1sest)2t dt= b2sesb+2s0bestt dt
s>0,
L=limbb2esb =LH limb2bsesb =2slimbbesb=LH 2slimb1sesb=2s2limb1esb=0

factorial.

n,n!,n.5!=54321=120.
You have attempted 1 of 1 activities on this page.