Skip to main content
Logo image

Section C.5 Laplace Transforms

\(s=0\text{,}\)\(\ds e^{0t} = 1\)
\begin{align*} =\amp\ 15 \lim_{b \to \infty}\int_0^b 1\ dt = 15 \lim_{b \to \infty} t\Big|_0^b = 15 \lim_{b \to \infty} b = \infty. \end{align*}
\(s=0\text{,}\)does not exist\(s\text{.}\)
\(s=0\text{,}\)
\begin{align*} =\amp\ \lim_{b \to \infty} \int_0^b t\ dt = \lim_{b \to \infty} \frac{t^2}{2}\Big|_0^b = \frac{1}{2} \lim_{b \to \infty} b^2 = \infty. \end{align*}
\(s\ne 0\)
\(s \lt 0\text{,}\)\(b \to \infty\text{,}\)\(\ds e^{-sb} \to \infty\)
\begin{equation*} \lim_{b \to \infty} \os{\infty}{\os{\uparrow}{\boxed{b}}}\ \us{\infty}{\us{\downarrow}{\boxed{e^{-sb}}}} = \infty. \end{equation*}
\(s \lt 0\text{.}\)\(s \gt 0\text{.}\)
\(b\text{,}\)\(s\)\(\ds-\frac{1}{s}\)
\(b \to \infty\text{,}\)\(\os{negative}{\ob{(7-s)}}b \to -\infty\)\(\ds e^{\!\!\os{\Large negative}{\ob{(7-s)}}\!\!b} \to 0\)
\begin{align*} \lap{ t^2 } =\amp\ \int_0^{\infty} e^{-st}\cdot t^2 dt \\ \amp\os{(1)}{=} t^2 \cdot -\frac{1}{s}e^{-st}\Bigg|_0^{\infty} - \int_0^{\infty} -\frac{1}{s}e^{-st}\cdot 2tdt \\ \amp\os{(2)}{=} -\frac{1}{s}\left[ t^2e^{-st}\Bigg|_0^{\infty} - 2\int_0^{\infty}e^{-st}\cdot tdt \right] \\ \amp\os{(3)}{=} -\frac{1}{s}\left[t^2e^{-st}\Bigg|_0^{\infty} - 2\lap{ t } \right] \\ \amp\os{(4)}{=} -\frac{1}{s}\left[ \lim_{b \to \infty} t^2e^{-st}\Bigg|_0^{b} - 2\lap{ t } \right] \\ =\amp\ -\frac{1}{s}\left[ \lim_{b \to \infty} \left( b^2e^{-sb} - 0^2\cdot e^{-s\cdot 0} \right) - 2\cdot \frac{1}{s^2} \right] \\ =\amp\ -\frac{1}{s}\left[ \lim_{b \to \infty} b^2e^{-sb} - 0 - \frac{2}{s^2} \right] \\ =\amp\ -\frac{1}{s}\left[ \lim_{b \to \infty} \frac{b^2}{e^{sb}} - \frac{2}{s^2} \right] \\ \amp\os{(5)}{=} -\frac{1}{s}\left[ \lim_{b \to \infty} \frac{2b}{se^{sb}} - \frac{2}{s^2} \right] \\ =\amp\ -\frac{1}{s}\left[ \frac{2}{s}\lim_{b \to \infty} \frac{b}{e^{sb}} - \frac{2}{s^2} \right] \\ =\amp\ -\frac{1}{s}\left[ \frac{2}{s}\lim_{b \to \infty} \frac{1}{se^{sb}} - \frac{2}{s^2} \right] \\ =\amp\ -\frac{1}{s}\left[ \frac{2}{s}\cdot 0 - \frac{2}{s^2} \right] \\ =\amp\ \frac{2}{s^3} \end{align*}
\begin{align*} \lap{ t^3 } =\amp\ \int_0^{\infty} e^{-st}\cdot t^3 dt \\ \amp\os{(1)}{=} t^3 \cdot -\frac{1}{s}e^{-st}\Bigg|_0^{\infty} - \int_0^{\infty} -\frac{1}{s}e^{-st}\cdot 3t^2dt \\ \amp\os{(2)}{=} -\frac{1}{s}\left[ t^3e^{-st}\Bigg|_0^{\infty} - 3\int_0^{\infty}e^{-st}\cdot t^2 dt \right]\\ \amp\os{(3)}{=} -\frac{1}{s}\left[ \lim_{b \to \infty}t^3 e^{-st}\Bigg|_0^{b} - 3\lap{ t^2 } \right]\\ \amp\os{(4)}{=} -\frac{1}{s}\left[ \lim_{b \to \infty}\left( b^3 e^{-sb} - 0^3\cdot e^{-s\cdot 0} \right) - 3\cdot \frac{2}{s^3} \right]\\ =\amp\ -\frac{1}{s}\left[ \lim_{b \to \infty}b^3 e^{-sb} - 0 - \frac{6}{s^3} \right]\\ =\amp\ -\frac{1}{s}\left[ \lim_{b \to \infty}\frac{b^3}{e^{sb}} - \frac{6}{s^3} \right]\\ \amp\os{(5)}{=} -\frac{1}{s}\left[ \lim_{b \to \infty}\frac{3b^2}{se^{sb}} - \frac{6}{s^3} \right]\\ =\amp\ -\frac{1}{s}\left[ \frac{3}{s}\lim_{b \to \infty}\frac{b^2}{e^{sb}} - \frac{6}{s^3} \right]\\ =\amp\ -\frac{1}{s}\left[ \frac{3}{s}\lim_{b \to \infty}\frac{2b}{se^{sb}} - \frac{6}{s^3} \right]\\ =\amp\ -\frac{1}{s}\left[ \frac{6}{s^2}\lim_{b \to \infty}\frac{b}{e^{sb}} - \frac{6}{s^3} \right]\\ =\amp\ -\frac{1}{s}\left[ \frac{6}{s^2}\lim_{b \to \infty}\frac{1}{se^{sb}} - \frac{6}{s^3} \right]\\ =\amp\ -\frac{1}{s}\left[ \frac{6}{s^2}\cdot 0 - \frac{6}{s^3} \right]\\ =\amp\ \frac{6}{s^4} \end{align*}
\begin{align*} \lap{ t^4 } =\amp\ \int_0^{\infty} e^{-st}\cdot t^4 dt\\ \amp\os{(1)}{=} t^4 \cdot -\frac{1}{s}e^{-st}\Bigg|_0^{\infty} - \int_0^{\infty} -\frac{1}{s}e^{-st}\cdot 4t^3dt\\ \amp\os{(2)}{=} -\frac{1}{s}\left[ t^4e^{-st}\Bigg|_0^{\infty} - 4\int_0^{\infty}e^{-st}\cdot t^3 dt \right]\\ \amp\os{(3)}{=} -\frac{1}{s}\left[ \lim_{b \to \infty}t^4 e^{-st}\Bigg|_0^{b} - 4\lap{ t^3 } \right]\\ \amp\os{(4)}{=} -\frac{1}{s}\left[ \lim_{b \to \infty}\left( b^4 e^{-sb} - 0^4\cdot e^{-s\cdot 0} \right) - 4\cdot \frac{6}{s^4} \right]\\ =\amp\ -\frac{1}{s}\left[ \lim_{b \to \infty}b^4 e^{-sb} - 0 - \frac{24}{s^4} \right]\\ =\amp\ -\frac{1}{s}\left[ \lim_{b \to \infty}\frac{4b^3}{se^{sb}} - \frac{24}{s^4} \right]\\ =\amp\ -\frac{1}{s}\left[ \frac{4}{s}\lim_{b \to \infty}\frac{b^3}{e^{sb}} - \frac{24}{s^4} \right]\\ \amp\os{(5)}{=} -\frac{1}{s}\left[ \frac{4}{s}\lim_{b \to \infty}\frac{3b^2}{se^{sb}} - \frac{24}{s^4} \right]\\ =\amp\ -\frac{1}{s}\left[ \frac{12}{s^2}\lim_{b \to \infty}\frac{b^2}{e^{sb}} - \frac{24}{s^4} \right]\\ =\amp\ -\frac{1}{s}\left[ \frac{12}{s^2}\lim_{b \to \infty}\frac{2b}{se^{sb}} - \frac{24}{s^4} \right]\\ =\amp\ -\frac{1}{s}\left[ \frac{24}{s^3}\lim_{b \to \infty}\frac{b}{e^{sb}} - \frac{24}{s^4} \right]\\ =\amp\ -\frac{1}{s}\left[ \frac{24}{s^3}\lim_{b \to \infty}\frac{1}{se^{sb}} - \frac{24}{s^4} \right]\\ =\amp\ -\frac{1}{s}\left[ \frac{24}{s^3}\cdot 0 - \frac{24}{s^4} \right]\\ =\amp\ \frac{24}{s^5} \end{align*}
Key Steps
\(\os{[1]}{=}\)
Integration by parts with \(u = f(t)\) and \(dv = e^{-st} dt\)
\(\os{[2]}{=}\)
\(s\) is a constant in this integral, so we can bring it out.
\(\os{[3]}{=}\)
\(\ds e^{-st} f(t) = \frac{f(t)}{e^{st}}\) must go to zero.
\(\LARGE \vphantom{\int}\)L1.
\(\ds \lap{ 1 } = \frac{1}{s}, \quad s >0 \)
\(\LARGE \vphantom{\int}\)L2.
\(\ds \lap{ e^{at} } = \frac{1}{s-a}, \quad s >a\)
\(\LARGE \vphantom{\int}\)L3.
\(\ds \lap{ t^n } = \frac{n!}{s^{n+1}}, \quad s >0 \)
\(\LARGE \vphantom{\int}\)L4.
\(\ds \lap{ \sin (bt) } = \frac{b}{s^2 + b^2}, \quad s >0\)
\(\LARGE \vphantom{\int}\)L5.
\(\ds \lap{ \cos(bt) } = \frac{s}{s^2 + b^2}, \quad s >0\)
\(\LARGE \vphantom{\int}\)L6.
\(\ds \lap{ t^n e^{at} } = \frac{n!}{(s-a)^{n+1}}, \quad s >a \)
\(\LARGE \vphantom{\int}\)L7.
\(\ds \lap{ e^{at} \sin(bt) } = \frac{b}{(s-a)^2 + b^2}, \quad s >a\)
\(\LARGE \vphantom{\int}\)L8.
\(\ds \lap{ e^{at} \cos(bt) } = \frac{s-a}{(s-a)^2 + b^2}, \quad s >a\)
\(\LARGE \vphantom{\int}\)L9.
\(\ds \lap{ a f(t) + b g(t) } = a \lap{ f(t) } + b \lap{ g(t) }, \quad a, b \text{ constant}\)
\(\LARGE \vphantom{\int}\)L10.
\(\ds \lap{ f'(t) } = sF(s) - f(0)\)
\(\LARGE \vphantom{\int}\)L11.
\(\ds \lap{ f''(t) } = s^2 F(s) - sf(0) - f'(0)\)
\(\LARGE \vphantom{\int}\)L12.
\(\ds \lap{ f^{(n)}(t) } = s^n F(s) - s^{n-1}f(0) - s^{n-2}f'(0) - \cdots - f^{(n-1)}(0)\)
\(\LARGE \vphantom{\int}\)L13.
\(\ds \lap{ t^n f(t) } = (-1)^n\frac{d^n}{ds^n}\big( \lap{ t^n f(t) } \big)\)
\(\LARGE \vphantom{\int}\)L14.
\(\ds \lap{ U(t-a) } = \frac{e^{-as}}{s}\)
\(\LARGE \vphantom{\int}\)L15.
\(\ds \lap{ f(t) U(t-a) } = e^{-as} \lap{ f(t+a) }\)
\(\LARGE \vphantom{\int}\)L16.
\(\ds \lap{ f(t-a)U(t-a) } = e^{-as}F(s)\)

graph of \(e^{-1.2b}\) vs. \(e^{+1.2b}\).

\begin{align*} \amp L14: \quad \ds \lap{ U(t-a) } = \frac{e^{-as}}{s}\\ \amp L15: \quad \ds \lap{ f(t) U(t-a) } = e^{-as} \lap{ f(t+a) }\\ \amp L16: \quad \ds \lap{ f(t-a)U(t-a) } = e^{-as}F(s) \end{align*}
\begin{align*} 4s^3 \amp - 13s^2 + 74s + 27\\ =\amp\ (As + B)(s+1)^2 + C(s+1)(s^2 - 6s + 25) + D(s^2 - 6s + 25)\\ =\amp\ (As + B)(s^2 + 2s + 1) + (Cs+C)(s^2 - 6s + 25) + Ds^2 - 6Ds + 25D\\ =\amp\ As^3 + 2As^2 + As + Bs^2 + 2Bs + B + Cs^3 - 6Cs^2 + 25Cs + Cs^2 - 6Cs + 25C + Ds^2 - 6Ds + 25D\\ =\amp\ (A + C)s^3 + (2A+ B - 6C + C + D)s^2 + (A+ 2B + 25C- 6C- 6D)s + (B + 25C + 25D)\\ =\amp\ (A + C)s^3 + (2A+ B - 5C + D)s^2 + (A+ 2B + 19C- 6D)s + (B + 25C + 25D) \end{align*}
Equating coefficients gives us four equations in four unknowns.
\begin{align*} A+C =\amp\ 4 \amp 2A+B-5C+D =\amp\ -13 \amp A + 2B + 19C - 6D =\amp\ 74 \amp B+ 25C + 25D =\amp\ 27\\ A =\amp\ 4-C\amp \amp \amp \amp \amp\amp\\ \amp \amp 2(4 - C)+B-5C+D =\amp\ -13 \amp (4-C)+2B+19C-6D =\amp\ 74 \amp\amp\\ \amp \amp B - 7C + D =\amp\ -21 \amp 2B+18C-6D =\amp\ 70 \amp\amp\\ \amp \amp B =\amp\ 7C - D - 21 \amp \amp \amp\amp\\ \amp \amp \amp \amp 2(7C - D - 21)+18C-6D =\amp\ 70 \amp\\ (7C - D - 21) + 25C + 25D =\amp\ 27\\ \amp \amp \amp \amp 32C-8D =\amp\ 112 \amp\\ 32C + 24D =\amp\ 48\\ \amp \amp \amp \amp 32C =\amp\ 8D + 112 \amp\amp\\ \amp \amp \amp \amp \amp \amp\\ (8D + 112) + 24D =\amp\ 48\\ \amp \amp \amp \amp \amp \amp\\ 32D =\amp\ -64\\ \amp \amp \amp \amp \amp \amp\\ D =\amp\ -2\\ \amp \amp \amp \amp 32C =\amp\ 8(-2) + 112 \amp\amp\\ \amp \amp \amp \amp =\amp\ 96 \amp\amp\\ \amp \amp \amp \amp C =\amp\ 3 \amp\amp\\ \amp \amp B =\amp\ 7(3) - (-2) - 21\amp \amp \amp \amp\amp\\ \amp \amp =\amp\ 2 \amp \amp \amp \amp\amp\\ A =\amp\ 4 - (3)\amp \amp \amp \amp \amp \amp\amp\\ =\amp\ 1 \amp \amp \amp \amp \amp \amp\amp \end{align*}
Partial fraction decomposition has the form,
\begin{equation*} \frac{54}{(s+1)(s^2 - 4s + 13)} = \frac{A}{s+1} + \frac{Bs + C}{s^2 - 4s + 13}, \end{equation*}
and we find \(A\text{,}\) \(B\text{,}\) and \(C\) by
\begin{align*} 54 =\amp\ A(s^2 - 4s + 13) + (Bs+C)(s+1)\\ 54 =\amp\ As^2 - 4As + 13A + Bs^2 + Bs + Cs + C\\ 0s^2 + 0s + 54 =\amp\ (A + B)s^2 + (-4A + B + C)s + (13A + C) \end{align*}
\begin{align*} A+B =\amp\ 0 \amp -4A +B+C =\amp\ 0 \amp 13A + C =\amp\ 54\\ A =\amp\ -B \amp \amp \amp \amp\\ \amp \amp -4(-B)+B+C =\amp\ 0 \amp 13(-B)+C =\amp\ 54\\ \amp \amp 5B + C =\amp\ 0 \amp -13B + C =\amp\ 54\\ \amp \amp C =\amp\ -5B \amp \amp\\ \amp \amp \amp \amp -13B + (-5B) =\amp\ 54\\ \amp \amp \amp \amp -18B =\amp\ 54\\ \amp \amp \amp \amp B =\amp\ -3\\ A =\amp\ -(-3) \amp C =\amp\ -5(-3)\amp \amp\\ =\amp\ 3 \amp =\amp\ 15\amp \amp \end{align*}
\begin{align*} x(t) =\amp\ 3e^{-t} - 3e^{2t}\cos(3t) + 3e^{2t}\sin(3t)\\ =\amp\ 3e^{-t} + e^{2t} \Big[ 3\sin(3t) - 3\cos(3t) \Big]\\ \amp\\ x'(t) =\amp\ -3e^{-t} + e^{2t}\Big[ 9\cos(3t) + 9\sin(3t) \Big]\\ =\amp\ -3e^{-t} + e^{2t}\Big[ 9\cos(3t) + 9\sin(3t) + 6\sin(3t) - 6\cos(3t) \Big]\\ =\amp\ -3e^{-t} + e^{2t}\Big[ 3\cos(3t) + 15\sin(3t) \Big]\\ \amp\\ x''(t) =\amp\ 3e^{-t} + e^{2t}\Big[ -9\sin(3t) + 45\cos(3t) \Big]\\ =\amp\ 3e^{-t} + e^{2t}\Big[ -9\sin(3t) + 45\cos(3t) + 6\cos(3t) + 30\sin(3t) \Big]\\ =\amp\ 3e^{-t} + e^{2t}\Big[ 21\sin(3t) + 51\cos(3t) \Big] \end{align*}
\begin{align*} LHS =\amp\ x'' - 4x' + 13x\\ =\amp\ \left( 3e^{-t} + e^{2t}\Big[ 21\sin(3t) + 51\cos(3t) \Big] \right) \\ =\amp\ 3e^{-t} + e^{2t}\Big[ 21\sin(3t) + 51\cos(3t) \Big] \\ =\amp\ 3e^{-t} + e^{2t}\Big[ 21\sin(3t) + 51\cos(3t) \Big] \\ =\amp\ 54e^{-t}\\ =\amp\ RHS \end{align*}
We also verify the initial conditions:
\begin{align*} x(0) =\amp\ 3e^{-0} + e^{2\cdot 0} \Big[ 3\sin(3\cdot 0) - 3\cos(3\cdot 0) \Big]\\ =\amp\ 3 + \Big[ 3\cdot 0 - 3\cdot 1 \Big]\\ =\amp\ 3 - 3\\ =\amp\ 0\\ \amp\\ x'(0) =\amp\ -3e^{-0} + e^{2\cdot 0}\Big[ 3\cos(3\cdot 0) + 15\sin(3\cdot 0) \Big]\\ =\amp\ -3 + \Big[ 3\cdot 1 + 15\cdot 0 \Big]\\ =\amp\ - 3 + 3\\ =\amp\ 0 \end{align*}

\(\lap{e^{at}}\) Details.

Using the definition of the Laplace transform:
\begin{align*} \lap{ e^{at} } =\amp\ \int_0^{\infty} e^{-st} \cdot e^{at}\ dt\\ =\amp\ \lim_{b \to \infty}\int_0^b e^{(-s+a)t}\ dt \end{align*}
For the integral to converge, the exponent \(-s+a\) must be negative, leading to the condition \(s \gt a\text{.}\) Proceeding with the integration:
\begin{align*} \lap{ e^{at} } =\amp\ \lim_{b \to \infty}\int_0^b e^{(-s+a)t}\ dt\\ =\amp\ \lim_{b \to \infty} \frac{1}{a-s} e^{(-s+a)t} \Bigg|_0^b\\ =\amp\ \frac{1}{a-s} \left[ \lim_{b \to \infty} \left( e^{(a-s)b} - 1 \right) \right]\\ =\amp\ \frac{1}{a-s} \left[ 0 - 1 \right]\\ =\amp\ -\frac{1}{a-s} = \frac{1}{s-a}. \quad \text{for } s \gt a \end{align*}
Thus, the Laplace transform of \(e^{at}\) is:
\begin{equation*} \ds \lap{e^{at}} = \frac{1}{s - a}, \quad s \gt a. \end{equation*}

\(\lap{t}\) Details.

Using the definition of the Laplace transform:
\begin{equation*} \lap{ t } = \lim_{b \to \infty} \ub{\int_0^b e^{-st} \cdot t\ dt}_{I} \end{equation*}
\begin{align*} \phantom{\lap{t}} =\amp\ \lim_{b \to \infty} \left[-\frac{b}{s}e^{-sb} + \frac{1}{s}\int_0^b e^{-st} dt\right]\\ \phantom{\lap{t}} =\amp\ -\frac{1}{s} \lim_{b \to \infty} \left[-\frac{b}{e^{sb}}\right] + \frac{1}{s}\lim_{b \to \infty}\int_0^b e^{-st}\ dt\\ \phantom{\lap{t}} =\amp\ -\frac{1}{s}\ub{\lim_{b \to \infty}\frac{b}{e^{sb}}}_{L} + \frac{1}{s}\ub{\int_0^\infty e^{-st}\ dt}_{\lap{1}} \end{align*}
\begin{equation*} \lap{ t } = \frac{1}{s^2}, \quad s > 0\text{.} \end{equation*}
\begin{align*} u = t, \quad\amp dv = e^{-st}dt, \\ du = dt, \quad\amp v = -\frac{1}{s}e^{-st} \end{align*}
\begin{align*} \int_0^b e^{-st} \cdot t\ dt =\amp\ t \cdot \left( -\frac{1}{s}e^{-st} \right)\Bigg|_0^b - \int_0^b \left( -\frac{1}{s}e^{-st} \right) dt\\ =\amp\ -\frac{b}{s}e^{-sb} + \frac{1}{s}\int_0^b e^{-st} dt \end{align*}
\(b\)\(b\)\(s\)\(s \gt 0\text{,}\)
\begin{equation*} L = \lim_{b \to \infty}\frac{\os{\infty}{\os{\uparrow}{\boxed{b}}}}{\us{\infty}{\us{\downarrow}{\boxed{e^{sb}}}}} \,\us{LH}{=}\, \lim_{b \to \infty}\frac{1}{se^{sb}} = \frac{1}{s}\lim_{b \to \infty}\frac{1}{\us{\infty}{\us{\downarrow}{\boxed{e^{sb}}}}} = 0 \end{equation*}

\(\lap{t^2}\) Details.

Using the definition of the Laplace transform:
\begin{equation*} \lap{ t^2 } = \lim_{b \to \infty} \ub{\int_0^b e^{-st} \cdot t^2\ dt}_{I} \end{equation*}
\begin{align*} \phantom{\lap{t}} =\amp\ \lim_{b \to \infty} \left[-\frac{b^2}{s}e^{-sb} + \frac{2}{s}\int_0^b e^{-st}\cdot t\ dt\right]\\ \phantom{\lap{t}} =\amp\ -\frac{1}{s} \lim_{b \to \infty} \left[-\frac{b^2}{e^{sb}}\right] + \frac{2}{s}\lim_{b \to \infty}\int_0^b e^{-st}\cdot t\ dt\\ \phantom{\lap{t}} =\amp\ -\frac{1}{s}\ub{\lim_{b \to \infty}\frac{b^2}{e^{sb}}}_{L} + \frac{2}{s}\ub{\int_0^\infty e^{-st}\cdot t\ dt}_{\lap{t}} \end{align*}
L’Hopital’s Rule shows \(L=0\) and \(\lap{t}=1/s^2\text{.}\) Therefore,
\begin{equation*} \lap{ t^2 } = \frac{2}{s^3}, \quad s > 0\text{.} \end{equation*}
\begin{align*} u = t^2, \quad\amp dv = e^{-st}dt, \\ du = 2t\ dt, \quad\amp v = -\frac{1}{s}e^{-st} \end{align*}
\begin{align*} \int_0^b e^{-st} \cdot t^2\ dt =\amp\ t^2 \cdot \left( -\frac{1}{s}e^{-st} \right)\Bigg|_0^b - \int_0^b \left( -\frac{1}{s}e^{-st} \right) 2t\ dt\\ =\amp\ -\frac{b^2}{s}e^{-sb} + \frac{2}{s} \int_0^b e^{-st} \cdot t\ dt \end{align*}
\(s \gt 0\text{,}\)
\begin{align*} L = \lim_{b \to \infty}\frac{\os{\infty}{\os{\uparrow}{\boxed{b^2}}}}{\us{\infty}{\us{\downarrow}{\boxed{e^{sb}}}}}\ \amp\us{LH}{=}\ \lim_{b \to \infty}\frac{2b}{se^{sb}}\ = \frac{2}{s}\lim_{b \to \infty}\frac{\os{\infty}{\os{\uparrow}{\boxed{b}}}}{\us{\infty}{\us{\downarrow}{\boxed{e^{sb}}}}}\\ \amp\us{LH}{=}\ \frac{2}{s}\lim_{b \to \infty}\frac{1}{se^{sb}} = \frac{2}{s^2}\lim_{b \to \infty}\frac{1}{\us{\infty}{\us{\downarrow}{\boxed{e^{sb}}}}} = 0 \end{align*}

factorial.

\(n\text{,}\)\(n!\text{,}\)\(n\text{.}\)\(5! = 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 120\text{.}\)
You have attempted of activities on this page.