Skip to main content
Logo image

Subsection 9.2.3 Power Function, \(t^{n}\)

The power function \(t^n\) is another common function type found in differential equations. The Laplace transform of \(t^n\) follows a recursive pattern, which simplifies the computation for higher powers. We’ve already seen that \(\ds\lap{1} = \sfrac{1}{s}\text{.}\) Now, let’s compute the transforms for \(t\) and \(t^2\text{.}\)

Example 5.

\(\ \ \)\(t\)\(t^2\)
  • \(\ds \lap{t} = \frac{1}{s^2}, \quad s \gt 0 \quad \) Details
  • \(\ds \lap{t^2} = \frac{2}{s^3}, \quad s \gt 0 \quad \) Details
If you look in each solution, before computing \(L = 0\text{,}\) you’ll notice a relationship between the Laplace transforms of powers that differ by one. Namely,
\begin{equation*} \lap{t} = \frac{1}{s}\lap{1} \quad \text{and} \quad \lap{t^2} = \frac{2}{s}\lap{t}\text{,} \end{equation*}
and if you compute the Laplace transform of \(t^3\text{,}\) you’ll find that
\begin{equation*} \lap{t^3} = \frac{3}{s}\lap{t^2}\text{.} \end{equation*}
In general, this recursive pattern continues for any power \(n\) as
\begin{equation*} \lap{t^n} = \frac{n}{s}\lap{t^{n-1}}\text{.} \end{equation*}
So if we wanted the Laplace transform of \(t^4\text{,}\) we could find it like so
\begin{align*} \lap{t^4} =\amp\ \frac{4}{s}\lap{t^3}\\ =\amp\ \frac{4}{s}\left[\frac{3}{s}\lap{t^2}\right] = \frac{4\cdot 3}{s^2}\left[\frac{2}{s}\lap{t}\right] = \frac{4\cdot 3\cdot 2}{s^3}\cdot\frac{1}{s^2} = \ob{\frac{4\cdot 3\cdot 2\cdot 1}{s^5}}^{\text{factorial}}\text{.} \end{align*}
This pattern is true for higher powers of \(t\text{,}\) leading to the next laplace transform rule which makes use of the factorial.

Common Laplace Transform (Power).

\({\LARGE \vphantom{\int}}L_3\)
\(\ds \lap{ t^n } = \frac{n!}{s^{n+1}}, \quad s >0, \quad n = 1, 2, 3, \ldots \)

Reading Questions Check-Point Questions

1. \(\ds\lap{t^4} = \)\(\ds\frac{\fillinmath{X} !}{s^5}\).

  • \(4\)
  • Correct! The Laplace transform of \(t^4\) is \(\ds\frac{4!}{s^5}\text{.}\)
  • \(5\)
  • No, try again.
  • \(24\)
  • No, notice the factorial in the numerator.
  • \(120\)
  • No, try again.

2. \(\ds\lap{t^3} = \)\(\ds\frac{6}{\fillinmath{X}}\).

  • \(s^4\)
  • No, the power of \(s\) in the denominator should be \(4\text{.}\)
  • \(s^4\)
  • Correct! The Laplace transform of \(t^3\) is \(\ds\frac{6}{s^4}\text{.}\)
  • \(s^3\)
  • No, the power of \(s\) in the denominator should be \(4\text{.}\)
  • \(s^5\)
  • No, the power of \(s\) in the denominator should be \(4\text{.}\)

3. \(\ds\lap{\fillinmath{X}} = \ \frac{479001600}{s^{13}}\).

  • \(t^9\)
  • No, try again.
  • \(t^{10}\)
  • No, try again.
  • \(t^{11}\)
  • No, try again.
  • \(t^{12}\)
  • Correct! The Laplace transform of \(t^{12}\) is \(\ds\frac{479001600}{s^{13}}\text{.}\)

4. \(\ds\lap{t} = \) ?

  • \(\ds\frac{1}{s^2}\)
  • Correct! The Laplace transform of \(t\) is \(\ds\frac{1}{s^2}\text{.}\)
  • \(\ds\frac{1}{s}\)
  • No, the power of \(s\) in the denominator is not \(1\text{.}\)
  • \(1\)
  • No, the Laplace transform of \(t\) is not a constant.
  • \(\ds\frac{2}{s^2}\)
  • No, there should not be a \(2\) in the numerator.

5. \(\ds\lap{t^2} = \) ?

  • \(\ds\frac{1}{s^3}\)
  • No, the correct transform is \(\ds\frac{2}{s^3}\text{.}\)
  • \(\ds\frac{2}{s^3}\)
  • Correct! The Laplace transform of \(t^2\) is \(\ds\frac{2}{s^3}\text{.}\)
  • \(\ds\frac{1}{s^2}\)
  • No, the correct transform has a \(2\) in the numerator.
  • \(\ds\frac{2}{s^2}\)
  • No, the power of \(s\) in the denominator should be \(3\text{.}\)