Skip to main content
Logo image

Section A.3 Quadratic equations

We will be solving quadratic equations as we solve differential equations. If we want to solve a quadratic equation like \(ax^2 + bx + c = 0,\) there are several different methods we might use, including:
  1. factoring
  2. quadratic formula, \(\ds x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)
  3. completing the square
Most students prefer the first two methods, which is fine. We will end up completing the square later in the semester, so if you want to review that method now, you’ll reap the benefits later!
Solve the following quadratic equations. Note: It’s OK if the solutions are complex or imaginary.
  1. \(\ds 4x^2 + 12x + 9 = 0 \qquad\)
    Solution.
    \begin{align*} 4x^2 + 12x + 9 =\amp\ 0 \\ (2x + 3)(2x + 3) =\amp\ 0 \\ 2x+3 = 0 \amp \quad\text{or}\quad 2x+3 = 0 \\ x = -\frac{3}{2}, \amp \quad\text{or}\quad x = -\frac{3}{2} \\ \amp \\ \Rightarrow x = -\frac{3}{2} \text{ (double root)} \amp \end{align*}
    \begin{align*} x =\amp\ \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \\ =\amp\ \frac{-12 \pm \sqrt{12^2 - 4(4)(9)}}{2(4)} \\ =\amp\ \frac{-12 \pm \sqrt{144 - 144}}{8} \\ =\amp\ \frac{-12 \pm \sqrt{0}}{8} \qquad (\sqrt{0} \text{ implies a double root}) \\ =\amp\ -\frac{12}{8} \\ =\amp\ - \frac{3}{2} \end{align*}
    \begin{align*} 4x^2 + 12x + 9 =\amp\ 0 \\ 4x^2 + 12x =\amp\ -9 \\ x^2 + 3x =\amp\ -\frac{9}{4} \\ x^2 + 3x + \frac{9}{4} =\amp\ -\frac{9}{4} + \frac{9}{4}\\ \left(x + \frac{3}{2}\right)^2 =\amp\ 0 \\ x + \frac{3}{2} =\amp\ \pm\sqrt{0} \\ x =\amp\ -\frac{3}{2} \text{ (double root) } \end{align*}
    Answer.
    \begin{equation*} x = -\frac{3}{2} \mbox{ (double root)} \end{equation*}
  2. \(\ds 2x^2 - 9x - 35 = 0 \qquad\)
    Solution.
    \begin{align*} 2x^2 - 9x - 35 =\amp\ 0 \\ (2x + 5)(x - 7) =\amp\ 0 \\ 2x+5 = 0 \amp \quad\text{or}\quad x-7 = 0 \\ x = -\frac{5}{2}, \amp \quad\text{or}\quad x = 7 \\ \amp \\ \Rightarrow x = -\frac{5}{2}, 7 \amp \end{align*}
    \begin{align*} x =\amp\ \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \\ =\amp\ \frac{-(-9) \pm \sqrt{(-9)^2 - 4(2)(-35)}}{2(2)} \\ =\amp\ \frac{9 \pm \sqrt{81 + 280}}{4} \\ =\amp\ \frac{9 \pm \sqrt{361}}{4} \\ =\amp\ \frac{9 \pm 19}{4} \\ =\amp\ \frac{9 + 19}{4}, \frac{9 - 19}{4} \\ =\amp\ \frac{28}{4}, \frac{-10}{4} \\ =\amp\ 7, -\frac{5}{2} \end{align*}
    \begin{align*} 2x^2 - 9x - 35 =\amp\ 0 \\ 2x^2 - 9x =\amp\ 35 \\ x^2 - \frac{9}{2}x=\amp\ \frac{35}{2} \\ x^2 - \frac{9}{2}x + \left( \frac{9}{4} \right)^2 =\amp\ \frac{35}{2} + \left(\frac{9}{4}\right)^2 \\ \left(x - \frac{9}{4}\right)^2 =\amp\ \frac{280}{16} + \frac{81}{16} \\ \left(x - \frac{9}{4}\right)^2 =\amp\ \frac{361}{16} \\ x - \frac{9}{4} =\amp\ \pm \sqrt{\frac{361}{16}} \\ x - \frac{9}{4} =\amp\ \pm \frac{19}{4} \\ x =\amp\ \frac{9}{4} \pm \frac{19}{4} \\ x =\amp\ \frac{9}{4} + \frac{19}{4}, \frac{9}{4} - \frac{19}{4} \\ x =\amp\ \frac{28}{4}, - \frac{10}{4} \\ x =\amp\ 7, - \frac{5}{2} \end{align*}
    Answer.
    \begin{equation*} x = -\frac{5}{2}, 7 \end{equation*}
  3. \(\ds x^2 - 4x + 13 = 0 \qquad\)
    Solution.
    You might use the quadratic formula:
    \begin{align*} x =\amp\ \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \\ =\amp\ \frac{-(-4) \pm \sqrt{(-4)^2 - 4(1)(13)}}{2(1)} \\ =\amp\ \frac{4 \pm \sqrt{16 - 52}}{2} \\ =\amp\ \frac{4 \pm \sqrt{-36}}{2} \\ =\amp\ \frac{4 \pm 6i}{2} \\ =\amp\ 2 \pm 3i \\ =\amp\ 2 + 3i, 2 - 3i \end{align*}
    You could even complete the square:
    \begin{align*} x^2 - 4x + 13 =\amp\ 0 \\ x^2 - 4x =\amp\ -13 \\ x^2 - 4x + 4 =\amp\ -13 + 4 \\ (x-2)^2 =\amp\ -9 \\ x - 2 =\amp\ \pm \sqrt{-9} \\ x - 2 =\amp\ \pm 3i \\ x =\amp\ 2 \pm 3i \\ =\amp\ 2 + 3i, 2 - 3i \end{align*}
    Answer.
    \begin{equation*} x = 2 \pm 3i \end{equation*}
  4. Name at least two methods for solving quadratic equations.
    Answer.
  5. How many solutions does a quadratic equation have?
    Answer.
    1. two distinct real roots
    2. one repeated real root (i.e., a double root)
    3. complex conjugate roots

Solving Quadratic Equations.

The solution to the quadratic equation
\begin{equation} a x^2 + b x + c = 0 \tag{47} \end{equation}
is given by the quadratic formula:
\begin{equation} x = \frac{-b \pm \sqrt{\color{blue} b^2 - 4ac}}{2a}\text{.}\tag{48} \end{equation}
Notes:
  1. The \(\pm\) gives two solutions, say \(x_1\) and \(x_2\text{.}\)
  2. \(x_1\) and \(x_2\) are also known as the roots of \(\ a x^2 + b x + c\text{.}\)
  3. The value, \({\color{blue} b^2 - 4ac} \ \text{,}\) under the root in is called the discriminant.
  4. Equation (47) can be written as \(\quad\ds (x - x_1)(x - x_2) = 0 \text{.}\)
  5. If \({\color{blue} b^2 - 4ac > 0}\text{,}\) then \(x_1\) and \(x_2\) are different real numbers.
  6. If \({\color{blue} b^2 - 4ac = 0}\text{,}\) then \(x_1\) and \(x_2\) are the same real number (repeated).
  7. If \({\color{blue} b^2 - 4ac < 0}\text{,}\) then \(x_1\) and \(x_2\) are complex and can be written as
    \begin{equation*} x_1 = \alpha + \beta i, \quad x_2 = \alpha - \beta i\text{.} \end{equation*}
You have attempted of activities on this page.