Skip to main content
Logo image

Subsection 9.2.2 Exponential Function, \(e^{at}\)

The exponential function \(e^{at}\) is one of the most important functions in mathematics, especially in the context of differential equations. Let’s explore how this works with a specific example.

Example 4.

\(\ \ \)\(\lap{ e^{7t}} \text{.}\)
Solution.
We begin by applying the definition of the Laplace transform:
\begin{align*} \lap{ e^{7t} } =\amp\ \int_0^{\infty} e^{-st} \cdot e^{7t}\ dt\\ =\amp\ \lim_{b \to \infty}\int_0^b e^{(-s+7)t}\ dt \end{align*}
For this improper integral to converge, the exponent \(-s+7\) must be negative, meaning:
\begin{equation*} -s+7 \lt 0 \hspace{0.5cm}\Rightarrow \hspace{0.5cm} -s \lt -7 \hspace{0.5cm}\Rightarrow \hspace{0.5cm} s \gt 7\text{.} \end{equation*}
Thus, we proceed under the assumption that \(s \gt 7\text{.}\)
\begin{align*} \lap{ e^{7t} } =\amp\ \lim_{b \to \infty}\int_0^b e^{(-s+7)t}\, dt\\ =\amp\ \lim_{b \to \infty} \frac{1}{7-s} e^{(-s+7)t} \Bigg|_0^b\\ =\amp\ \frac{1}{-s+7} \left[ \lim_{b \to \infty} \left( e^{(-s+7)b} - e^{0} \right) \right]\\ =\amp\ \frac{1}{-s+7} \left[ \lim_{b \to \infty} e^{(-s+7)b} - 1 \right]\\ =\amp\ \frac{1}{-s+7} \left[ 0 - 1 \right] \qquad \Big(e^{(\text{negative})b} \to 0\Big)\\ =\amp\ -\frac{1}{-s+7} = \frac{1}{s-7}. \quad \text{for } s \gt 7 \end{align*}
Thus, the Laplace transform of \(e^{7t}\) is:
\begin{equation*} \ds \lap{e^{7t}} = \frac{1}{s - 7}, \quad s \gt 7. \end{equation*}
This result can be generalized for any constant \(a\text{,}\) giving us the Laplace transform of \(e^{at}\text{.}\) Here are the details.

Common Laplace Transform (Exponential).

\(L_2\)
\(\ds \lap{ e^{at} } = \frac{1}{s - a}, \quad s \gt a, \quad \)

Reading Questions Check-Point Questions

1. True/False. \(\ds\quad \lap{e^{at}} = \frac{1}{s + a}\).

  • True.

  • False. The correct formula is \(\ds\frac{1}{s - a}\text{,}\) not \(\ds\frac{1}{s + a}\text{.}\)
  • False.

  • False. The correct formula is \(\ds\frac{1}{s - a}\text{,}\) not \(\ds\frac{1}{s + a}\text{.}\)

2. What must be true about \(s\) for \(\lap{e^{137t}}\) to exist?

  • \(s \lt 137\)
  • No, \(s\) must be greater than 137 for the Laplace transform of \(e^{137t}\) to exist.
  • \(s = 137\)
  • No, the Laplace transform does not exist at \(s = 137\) because the integral does not converge.
  • \(s \gt 137\)
  • Correct! The Laplace transform of \(e^{137t}\) exists only when \(s \gt 137\text{.}\)
  • \(s \lt 0\)
  • No, \(s\) must be greater than 7, not less than 0, for the Laplace transform to exist.

3. \(\lap{e^{-3t}} = \) ?

  • \(\ds\frac{1}{s+3}\)
  • Correct! The Laplace transform of \(e^{-3t}\) is \(\ds\frac{1}{s+3}\text{.}\)
  • \(\ds\frac{1}{s-3}\)
  • No, try again.
  • \(\ds\frac{1}{s-3t}\)
  • No, the Laplace transform should not contain the variable \(t\text{.}\)
  • \(\ds\frac{3}{s+3}\)
  • No, double-check the numerator.

4. \(\ds\quad \lap{e^{3t}} = \frac{1}{s - \fillinmath{X}}\).

  • 3
  • Correct! The Laplace transform of \(e^{3t}\) is \(\frac{1}{s - 3}\text{.}\)
  • 1
  • No, this is incorrect. The exponent in the denominator should match the exponent in \(e^{3t}\text{.}\)
  • 0
  • No, this is incorrect. The correct value is \(3\text{,}\) not \(0\text{.}\)
  • -3
  • No, this is incorrect. The value should be positive \(3\text{,}\) not negative.