Skip to main content
Contents Index
Calc
Dark Mode Prev Next Profile
\(\newcommand\DLGray{\color{Gray}}
\newcommand\DLO{\color{BurntOrange}}
\newcommand\DLRa{\color{WildStrawberry}}
\newcommand\DLGa{\color{Green}}
\newcommand\DLGb{\color{PineGreen}}
\newcommand\DLBa{\color{RoyalBlue}}
\newcommand\DLBb{\color{Cerulean}}
\newcommand\ds{\displaystyle}
\newcommand\ddx{\frac{d}{dx}}
\newcommand\os{\overset}
\newcommand\us{\underset}
\newcommand\ob{\overbrace}
\newcommand\obt{\overbracket}
\newcommand\ub{\underbrace}
\newcommand\ubt{\underbracket}
\newcommand\ul{\underline}
\newcommand\laplacesym{\mathscr{L}}
\newcommand\lap[1]{\laplacesym\left\{#1\right\}}
\newcommand\ilap[1]{\laplacesym^{-1}\left\{#1\right\}}
\newcommand\tikznode[3][]
{\tikz[remember picture,baseline=(#2.base)]
\node[minimum size=0pt,inner sep=0pt,#1](#2){#3};
}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\newcommand{\sfrac}[2]{{#1}/{#2}}
\)
Chapter 4 Direct Integration
π: π§ Listen.
Your browser does not support the <audio> tag.
Solving a differential equation might sound like a new challenge, but youβve already done it in calculus! Whenever you find an antiderivative, youβre solving a differential equation.
In this section, weβll reframe antiderivatives as solutions to differential equations and use this perspective to introduce our first method: direct integration. By the end, youβll be able to find general and particular solutions to simple differential equations using integration.
ποΈ Key Takeaways...
The general solution to the differential equation
\begin{equation*}
\frac{dy}{dx} = f(x)
\end{equation*}
is given by
\begin{equation*}
y(x) = F(x) + c
\end{equation*}
where \(F(x)\) is any antiderivative of \(f(x)\) and \(c\) is any constant.
If the differential equation can be expressed as
\begin{equation*}
\frac{d}{dx}[\ ... ] = f(x)
\end{equation*}
then the general solution can be found by direct integration . For example, integrating both sides of the equations
\begin{equation*}
\frac{dy}{dx} = \cos x \quad\text{or}\quad \frac{d}{dx}\left[x^2\cos(y)\right] = x + e^x \text{.}
\end{equation*}
removes the derivative, allowing you to isolate the unknown, \(y\text{.}\)