Skip to main content 
 Contents  Index  Dark Mode  Prev  Up Next   Scratch ActiveCode  Profile  \(\newcommand{\dollar}{\$}
\DeclareMathOperator{\erf}{erf}
\DeclareMathOperator{\arctanh}{arctanh}
              \DeclareMathOperator{\arcsec}{arcsec}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle     \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle        \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle      \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\) 
Activity   3.3.2 . 
 
Suppose that \(g(x)\)  is a function whose first derivative is
\begin{equation*}
g'(x) = \frac{(x+4)(x-2)}{x^2+1}\text{.}
\end{equation*}
 (a) Determine, with justification, all critical numbers of 
\(g\text{.}\) 
(b) By developing a carefully labeled first derivative sign chart, decide whether 
\(g\)  has as a local maximum, local minimum, or neither at each critical number.
(c) Does 
\(g\)  have a global maximum? global minimum? Justify your claims.
(d) Sketch a possible graph of 
\(y = g(x)\text{.}\)   Clearly label any local or global extrema on the graph.