Skip to main content\(\newcommand{\dollar}{\$}
\DeclareMathOperator{\erf}{erf}
\DeclareMathOperator{\arctanh}{arctanh}
\DeclareMathOperator{\arcsec}{arcsec}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Appendix A A Short Table of Integrals
\(\displaystyle \int \frac{du}{a^2 + u^2} = \frac{1}{a} \arctan \left( \frac{u}{a} \right) + C\)
\(\displaystyle \int \frac{du}{\sqrt{u^2 \pm a^2}} = \ln |u + \sqrt{u^2 \pm a^2}| + C\)
\(\displaystyle \int \sqrt{u^2 \pm a^2} \, du = \frac{u}{2}\sqrt{u^2 \pm a^2} \pm \frac{a^2}{2}\ln|u + \sqrt{u^2 \pm a^2}| + C\)
\(\displaystyle \int \frac{u^2 du}{\sqrt{u^2 \pm a^2}} = \frac{u}{2}\sqrt{u^2 \pm a^2} \mp \frac{a^2}{2}\ln|u + \sqrt{u^2 \pm a^2}| + C\)
\(\displaystyle \int \frac{du}{u\sqrt{u^2+a^2}} = -\frac{1}{a} \ln \left| \frac{a+\sqrt{u^2 + a^2}}{u} \right| + C\)
\(\displaystyle \int \frac{du}{u\sqrt{u^2-a^2}} = \frac{1}{a} \arcsec \left( \frac{u}{a} \right) + C\)
\(\displaystyle \int \frac{du}{\sqrt{a^2 - u^2}} = \arcsin \left( \frac{u}{a} \right) + C\)
\(\displaystyle \int \sqrt{a^2 - u^2} \, du = \frac{u}{2}\sqrt{a^2 - u^2} + \frac{a^2}{2} \arcsin \left( \frac{u}{a} \right) + C\)
\(\displaystyle \int \frac{u^2}{\sqrt{a^2 - u^2}} \, du = -\frac{u}{2}\sqrt{a^2 - u^2} + \frac{a^2}{2} \arcsin \left( \frac{u}{a} \right) + C\)
\(\displaystyle \int \frac{du}{u\sqrt{a^2 - u^2}} = -\frac{1}{a} \ln \left| \frac{a + \sqrt{a^2 - u^2}}{u} \right| + C\)
\(\displaystyle \int \frac{du}{u^2\sqrt{a^2 - u^2}} = -\frac{\sqrt{a^2-u^2}}{a^2 u} + C\)