Skip to main content 
 Contents  Index  Dark Mode  Prev  Up Next   Scratch ActiveCode  Profile  \(\newcommand{\dollar}{\$}
\DeclareMathOperator{\erf}{erf}
\DeclareMathOperator{\arctanh}{arctanh}
              \DeclareMathOperator{\arcsec}{arcsec}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle     \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle        \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle      \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\) 
Activity   3.2.2 . 
 
Evaluate each of the following limits. If you use L’Hôpital’s Rule, indicate where it was used, and be certain the limit is indeterminate before you apply it.
(a) 
\(\displaystyle \lim_{x \to 0} \frac{\ln(1 + x)}{x}\) 
 
(b) 
\(\displaystyle \lim_{x \to \pi} \frac{\cos(x)}{x}\) 
 
(c) 
\(\displaystyle \lim_{x \to 1} \frac{2 \ln(x)}{1-e^{x-1}}\) 
 
(d) 
\(\displaystyle \lim_{x \to 0} \frac{\sin(x) - x}{\cos(2x)-1}\)