Appendix C Answers to Selected Exercises
This appendix contains answers to all non-WeBWorK exercises in the text.
1 Understanding the Derivative
1.1 How do we measure velocity?
1.1.4 Exercises
1.1.4.10.
Answer.
-
When the diver is going upward, her velocity is positive. When she is going downward, her velocity is negative. At the peak of her dive and when her feet touch the bottom of the pool.
-
It looks like when the position function is steep, the velocity function’s value is farther away from zero, and that whenever the height/position function is rising/increasing, the velocity function has a positive value. Similarly, whenever the position function is decreasing, the velocity is negative.
1.1.4.11.
1.2 The notion of limit
1.2.4 Exercises
1.2.4.8.
1.2.4.9.
1.2.4.10.
1.2.4.11.
1.3 The derivative of a function at a point
1.3.3 Exercises
1.3.3.10.
1.3.3.11.
1.3.3.12.
1.3.3.13.
1.4 The derivative function
1.4.3 Exercises
1.4.3.10.
1.4.3.11.
1.4.3.12.
1.4.3.13.
Answer.
1.5 Interpreting, estimating, and using the derivative
1.5.4 Exercises
1.5.4.6.
1.5.4.7.
Answer.
-
If a patient takes a dose of
ml of a drug, the patient will experience a body temperature change of degrees F. -
``degrees Fahrenheit per milliliter.’’
-
For a patient taking a
ml dose, adding one more ml to the dose leads us to expect a temperature change that is about degrees less than the temperature change induced by a ml dose.
1.5.4.8.
1.5.4.9.
1.6 The second derivative
1.6.5 Exercises
1.6.5.10.
1.6.5.11.
1.6.5.12.
1.6.5.13.
1.7 Limits, Continuity, and Differentiability
1.7.5 Exercises
1.7.5.7.
1.7.5.8.
1.7.5.9.
1.7.5.10.
1.8 The Tangent Line Approximation
1.8.4 Exercises
1.8.4.7.
1.8.4.8.
1.8.4.9.
1.8.4.10.
2 Computing Derivatives
2.1 Elementary derivative rules
2.1.5 Exercises
2.1.5.8.
2.1.5.9.
2.1.5.10.
2.1.5.11.
2.2 The sine and cosine functions
2.2.3 Exercises
2.2.3.5.
Answer.
-
thousands of dollars per year. -
thousands of dollars per year per year. At this moment, is decreasing and we expect the derivative’s value to decrease by about thousand dollars per year over the course of the next year. -
See the figure below. Adding the term
to to create the function adds volatility to the value of the portfolio.
2.2.3.6.
2.2.3.7.
2.3 The product and quotient rules
2.3.5 Exercises
2.3.5.11.
2.3.5.12.
2.3.5.13.
2.3.5.14.
2.3.5.15.
2.4 Derivatives of other trigonometric functions
2.4.3 Exercises
2.4.3.8.
2.4.3.9.
2.4.3.10.
2.5 The chain rule
2.5.5 Exercises
2.5.5.11.
2.5.5.12.
2.5.5.13.
Answer.
2.5.5.14.
Answer.
2.6 Derivatives of Inverse Functions
2.6.6 Exercises
2.6.6.7.
2.6.6.8.
2.6.6.9.
2.6.6.10.
2.7 Derivatives of Functions Given Implicitly
2.7.3 Exercises
2.7.3.12.
2.7.3.13.
2.7.3.14.
2.8 Using Derivatives to Evaluate Limits
2.8.4 Exercises
2.8.4.11.
2.8.4.12.
2.8.4.13.
2.8.4.14.
3 Using Derivatives
3.1 Using derivatives to identify extreme values
3.1.4 Exercises
3.1.4.9.
3.1.4.10.
3.1.4.11.
3.1.4.12.
3.2 Using derivatives to describe families of functions
3.2.3 Exercises
3.2.3.6.
3.2.3.7.
3.2.3.8.
3.3 Global Optimization
3.3.4 Exercises
3.3.4.7.
3.3.4.8.
3.3.4.9.
3.3.4.10.
3.4 Applied Optimization
3.4.3 Exercises
3.4.3.9.
3.4.3.10.
3.4.3.11.
3.4.3.12.
3.5 Related Rates
3.5.3 Exercises
3.5.3.9.
3.5.3.10.
3.5.3.11.
3.5.3.12.
4 The Definite Integral
4.1 Determining distance traveled from velocity
4.1.5 Exercises
4.1.5.7.
4.1.5.8.
4.1.5.9.
4.1.5.10.
4.2 Riemann Sums
4.2.5 Exercises
4.2.5.8.
Answer.
-
-
The rectangles with heights that come from the midpoint have the same area as the trapezoids that are formed by the function values at the two endpoints of each subinterval.
4.2.5.9.
4.2.5.10.
4.2.5.11.
4.3 The Definite Integral
4.3.5 Exercises
4.3.5.9.
4.3.5.10.
4.3.5.11.
4.3.5.12.
4.4 The Fundamental Theorem of Calculus
4.4.5 Exercises
4.4.5.11.
4.4.5.12.
4.4.5.13.
4.4.5.14.
4.4.5.15.
5 Evaluating Integrals
5.1 Constructing Accurate Graphs of Antiderivatives
5.1.5 Exercises
5.1.5.5.
5.1.5.6.
5.1.5.7.
5.2 The Second Fundamental Theorem of Calculus
5.2.5 Exercises
5.2.5.5.
5.2.5.6.
5.2.5.7.
Answer.
-
(feet) (ft/min) (min/ft) -
The antiderivative function tells us the total number of minutes that it takes for the plane to climb to an altitude of
feet. -
The number of minutes required for the airplane to ascend to
feet of altitude is given by the definite integral -
The number of minutes required for the airplane to ascend to
feet of altitude is given by the definite integral
5.3 Integration by Substitution
5.3.5 Exercises
5.3.5.11.
5.3.5.12.
5.3.5.13.
5.3.5.14.
Answer.
5.4 Integration by Parts
5.4.7 Exercises
5.4.7.13.
5.4.7.14.
5.4.7.15.
5.5 Other Options for Finding Algebraic Antiderivatives
5.5.5 Exercises
5.5.5.6.
5.5.5.7.
5.5.5.8.
5.6 Numerical Integration
5.6.6 Exercises
5.6.6.5.
5.6.6.6.
5.6.6.7.
6 Using Definite Integrals
6.1 Using Definite Integrals to Find Area and Length
6.1.5 Exercises
6.1.5.10.
6.1.5.11.
6.1.5.12.
6.2 Using Definite Integrals to Find Volume
6.2.5 Exercises
6.2.5.7.
6.2.5.8.
6.2.5.9.
6.3 Density, Mass, and Center of Mass
6.3.5 Exercises
6.3.5.5.
6.3.5.6.
6.3.5.7.
6.4 Physics Applications: Work, Force, and Pressure
6.4.5 Exercises
6.4.5.6.
6.4.5.7.
6.5 Improper Integrals
6.5.5 Exercises
6.5.5.11.
6.5.5.12.
7 Differential Equations
7.1 An Introduction to Differential Equations
7.1.5 Exercises
7.1.5.7.
7.1.5.8.
7.1.5.9.
7.2 Qualitative behavior of solutions to DEs
7.2.4 Exercises
7.2.4.6.
7.2.4.7.
7.2.4.8.
Answer.
-
A graph of
against is given in blue in the figure below. The equilibrium solutions are (unstable) and (stable). -
fish; harvesting at that rate will maintain the number of fish we start with, provided it’s at least
7.2.4.9.
7.3 Euler’s method
7.3.4 Exercises
7.3.4.6.
7.3.4.7.
7.3.4.8.
7.4 Separable differential equations
7.4.3 Exercises
7.4.3.8.
7.4.3.9.
7.4.3.10.
7.4.3.11.
7.5 Modeling with differential equations
7.5.3 Exercises
7.5.3.6.
7.5.3.7.
7.5.3.8.
7.5.3.9.
7.6 Population Growth and the Logistic Equation
7.6.4 Exercises
7.6.4.5.
7.6.4.6.
7.6.4.7.
8 Taylor Polynomials and Taylor Series
8.1 Approximating
8.1.5 Exercises
8.1.5.3.
Answer.
-
Table 8.1.21. Formulas and values for and its first two derivatives, plus their values at -
See the bottom half of the table in the previous item.
-
Table 8.1.22. Formulas and values for and and their first two derivatives.