Skip to main content
Logo image

PreTeXt Sample Book Abstract Algebra (SAMPLE ONLY)

Exercises 1.4 Exercises

View Source for exercises
  <exercises xml:id="exercises-sets" xml:base="exercises/sets.xml">
    <title>Exercises</title>

    <subexercises>
        <title>Warm-up</title>
        <introduction>
            <p>
                This is a meaningless subdivision of the exercises for the sake of testing output.
            </p>
        </introduction>

        <exercise number="1">
            <statement>
                <p>Suppose that<md>
                    <mrow>A &amp; = \{ x : x \in \mathbb N \text{ and } x \text{ is even} \},</mrow>
                    <mrow>B &amp; = \{x : x \in \mathbb N \text{ and } x \text{ is prime}\},</mrow>
                    <mrow>C &amp; = \{ x : x \in \mathbb N \text{ and } x \text{ is a multiple of 5}\}.</mrow>
                </md></p>
                <p>Describe each of the following sets.</p>
                <ol cols="2">
                    <li><p><m>A \cap B</m></p></li>
                    <li><p><m>B \cap C</m></p></li>
                    <li><p><m>A \cup B</m></p></li>
                    <li><p><m>A \cap (B \cup C)</m></p></li>
                </ol>
            </statement>
            <!-- commented out for testing, so that only even hints, answers, solutions may appear in the "solutions" -->
            <!-- <hint>
                <p>(a) <m>A \cap B = \{ 2 \}</m>; (b) <m>B \cap C = \{ 5 \}</m>.</p>
            </hint> -->
        </exercise>

        <exercise number="2">
            <statement>
                <p>If <m>A = \{ a, b, c \}</m>, <m>B = \{ 1, 2, 3 \}</m>, <m>C = \{ x \}</m>, and <m>D = \emptyset</m>, list all of the elements in each of the following sets.</p>
                <ol cols="2">
                    <li><p><m>A \times B</m></p></li>
                    <li><p><m>B \times A</m></p></li>
                    <li><p><m>A \times B \times C</m></p></li>
                    <li><p><m>A \times D</m></p></li>
                </ol>
            </statement>
            <hint>
                <p>(a) <m>A \times B = \{ (a,1), (a,2), (a,3), (b,1), (b,2), (b,3), (c,1), (c,2), (c,3) \}</m>; (d) <m>A \times D = \emptyset</m>.</p>
            </hint>
        </exercise>

        <exercise number="3">
            <statement>
                <p>Find an example of two nonempty sets <m>A</m> and <m>B</m> for which <m>A \times B = B \times A</m> is true.</p>
            </statement>
        </exercise>

        <exercise number="4">
            <statement>
                <p>Prove  <m>A \cup \emptyset = A</m> and <m>A \cap \emptyset = \emptyset</m>.</p>
            </statement>
        </exercise>

        <exercise number="5">
            <statement>
                <p>Prove <m>A \cup B = B \cup A</m> and <m>A \cap B = B \cap A</m>.</p>
            </statement>
        </exercise>

        <exercise number="6">
            <statement>
                <p>Prove <m>A \cup (B \cap C) = (A \cup B) \cap (A \cup C)</m>.</p>
            </statement>
            <hint>
                <p>If <m>x \in A \cup (B \cap C)</m>, then either <m>x \in A</m> or <m>x \in B \cap C</m>.  Thus,   <m> x \in A \cup B</m> and <m>A \cup C</m>.  Hence, <m> x \in (A \cup B) \cap (A \cup C)</m>. Therefore, <m>  A \cup (B \cap C) \subset (A \cup B) \cap (A \cup C)</m>.  Conversely, if <m>x \in (A \cup B) \cap (A \cup C)</m>, then <m>x \in A \cup B</m> and <m>A \cup C</m>. Thus, <m>x \in A</m> or <m>x</m> is in both <m>B</m> and <m>C</m>. So <m>x \in A \cup (B \cap C)</m> and therefore <m>(A \cup B) \cap (A \cup C) \subset A \cup (B \cap C)</m>. Hence, <m>A \cup (B \cap C) = (A \cup B) \cap (A \cup C)</m>.</p>
            </hint>
        </exercise>

        <exercise number="7">
            <statement>
                <p>Prove <m>A \cap (B \cup C) = (A \cap B) \cup (A \cap C)</m>.</p>
            </statement>
        </exercise>

        <exercise number="8">
            <statement>
                <p>Prove  <m>A \subset B</m> if and only if <m>A \cap B = A</m>.</p>
            </statement>
        </exercise>

        <exercise number="9">
            <statement>
                <p>Prove <m>(A \cap B)' = A' \cup B'</m>.</p>
            </statement>
        </exercise>

        <exercise number="10">
            <statement>
                <p>Prove  <m>A \cup B = (A \cap B) \cup (A \setminus B) \cup (B \setminus A)</m>.</p>
            </statement>
            <hint>
                <p><m>(A \cap B) \cup (A \setminus B) \cup (B \setminus A) = (A \cap B) \cup (A \cap B') \cup (B \cap A') = [A \cap (B \cup B')] \cup (B \cap A') = A \cup (B \cap A') = (A \cup B) \cap (A \cup A') = A \cup B</m>.</p>
            </hint>
        </exercise>

        <exercise number="11">
            <statement>
                <p>Prove  <m>(A \cup B) \times C = (A \times C ) \cup (B \times C)</m>.</p>
            </statement>
        </exercise>

        <exercise number="12">
            <statement>
                <p>Prove  <m>(A \cap B) \setminus B = \emptyset</m>.</p>
            </statement>
        </exercise>

        <exercise number="13">
            <statement>
                <p>Prove  <m>(A \cup B) \setminus B = A \setminus B</m>.</p>
            </statement>
        </exercise>

        <exercise number="14">
            <statement>
                <p>Prove  <m>A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)</m>.</p>
            </statement>
            <hint>
                <p><m>A \setminus (B \cup C) = A \cap (B \cup C)' = (A \cap A) \cap (B' \cap C') = (A \cap B') \cap (A \cap C') = (A \setminus B) \cap (A \setminus C)</m>.</p>
            </hint>
        </exercise>
    </subexercises>

    <subexercises>
        <title>More Exercises</title>
        <introduction>
            <p>
                This is a meaningless subdivision of the exercises for the sake of testing output.
            </p>
        </introduction>

        <exercise number="15">
            <statement>
                <p>Prove  <m>A \cap (B \setminus C) = (A \cap B) \setminus (A \cap C)</m>.</p>
            </statement>
        </exercise>

        <exercise number="16">
            <statement>
                <p>Prove  <m>(A \setminus B) \cup (B \setminus A) = (A \cup B) \setminus (A \cap B)</m>.</p>
            </statement>
        </exercise>

        <exercise number="17">
            <statement>
                <p>Which of the following relations <m>f: {\mathbb Q} \rightarrow {\mathbb Q}</m> define a mapping? In each case, supply a reason why <m>f</m> is or is not a mapping.</p>
                <ol cols="2">
                    <li><p><m>\displaystyle f(p/q) = \frac{p+ 1}{p - 2}</m></p></li>
                    <li><p><m>\displaystyle f(p/q) = \frac{3p}{3q}</m></p></li>
                    <li><p><m>\displaystyle f(p/q) = \frac{p+q}{q^2}</m></p></li>
                    <li><p><m>\displaystyle f(p/q) = \frac{3 p^2}{7 q^2} - \frac{p}{q}</m></p></li>
                </ol>
            </statement>
            <!-- commented out for testing, so that only even hints, answers, solutions may appear in the "solutions" -->
            <!-- <hint>
                <p>(a) Not a map since <m>f(2/3)</m> is undefined; (b) this is a map; (c) not a map, since <m>f(1/2) = 3/4</m> but <m>f(2/4)=3/8</m>; (d) this is a map.</p>
            </hint> -->
        </exercise>

        <exercise number="18">
            <statement>
                <p>Determine which of the following functions are one-to-one and which are onto.  If the function is not onto, determine its range.</p>
                <ol>
                    <li><p><m>f: {\mathbb R} \rightarrow {\mathbb R}</m> defined by <m>f(x) = e^x</m></p></li>
                    <li><p><m>f: {\mathbb Z} \rightarrow {\mathbb Z}</m> defined by <m>f(n) = n^2 + 3</m></p></li>
                    <li><p><m>f: {\mathbb R} \rightarrow {\mathbb R}</m> defined by <m>f(x) = \sin x</m></p></li>
                    <li><p><m>f: {\mathbb Z} \rightarrow {\mathbb Z}</m> defined by <m>f(x) = x^2</m></p></li>
                </ol>
            </statement>
            <hint>
                <p>(a) <m>f</m> is one-to-one but not onto. <m>f({\mathbb R} ) = \{ x \in {\mathbb R} : x \gt 0 \}</m>.  (c) <m>f</m> is neither one-to-one nor onto.  <m>f(\mathbb R) = \{ x : -1 \leq x \leq 1 \}</m>.</p>
            </hint>
        </exercise>

        <exercise number="19">
            <statement>
                <p>Let <m>f :A \rightarrow B</m> and <m>g : B \rightarrow C</m> be invertible mappings; that is, mappings such that <m>f^{-1}</m> and <m>g^{-1}</m> exist. Show that <m>(g \circ f)^{-1} =f^{-1} \circ g^{-1}</m>.</p>
            </statement>
        </exercise>

        <exercise number="20">
            <statement>
                <ol>
                    <li><p>Define a function <m>f: {\mathbb N} \rightarrow {\mathbb N}</m> that is one-to-one but not onto.</p></li>
                     <li><p>Define a function <m>f: {\mathbb N} \rightarrow {\mathbb N}</m> that is onto but not one-to-one.</p></li>
                </ol>
            </statement>
            <hint>
                <p>(a) <m>f(n) = n + 1</m>.</p>
            </hint>
        </exercise>

        <exercise number="21">
            <statement>
                <p>Prove the relation defined on <m>{\mathbb R}^2</m> by <m>(x_1, y_1 ) \sim (x_2, y_2)</m> if <m>x_1^2 + y_1^2 = x_2^2 + y_2^2</m> is  an equivalence relation.</p>
            </statement>
        </exercise>

        <exercise number="22">
            <statement>
                <p>Let <m>f : A \rightarrow B</m> and <m>g : B \rightarrow C</m> be maps.</p>
                <ol>
                    <li><p>If <m>f</m> and <m>g</m> are both one-to-one functions, show that <m>g \circ f</m> is one-to-one.</p></li>
                    <li><p>If <m>g \circ f</m> is onto, show that <m>g</m> is onto.</p></li>
                    <li><p>If <m>g \circ f</m> is one-to-one, show that <m>f</m> is one-to-one.</p></li>
                    <li><p>If <m>g \circ f</m> is one-to-one and <m>f</m> is onto, show that <m>g</m> is one-to-one.</p></li>
                    <li><p>If <m>g \circ f</m> is onto and <m>g</m> is one-to-one, show that <m>f</m> is onto.</p></li>
                </ol>
            </statement>
            <hint>
                <p>(a) Let <m>x, y \in A</m>. Then <m>g(f(x)) = (g \circ f)(x) = (g \circ f)(y) = g(f(y))</m>.  Thus, <m>f(x) = f(y)</m> and <m>x = y</m>,  so <m>g \circ f</m> is one-to-one. (b) Let <m>c \in C</m>, then <m>c = (g \circ f)(x) = g(f(x))</m> for some <m>x \in A</m>. Since <m>f(x) \in B</m>, <m>g</m> is onto.</p>
            </hint>
        </exercise>

        <exercise number="23">
            <statement>
                <p>Define a function on the real numbers by
                    <me>f(x) = \frac{x + 1}{x - 1}.</me>
                What are the domain and range of <m>f</m>? What is the inverse of <m>f</m>?  Compute <m>f \circ f^{-1}</m> and <m>f^{-1} \circ f</m>.</p>
            </statement>
            <!-- commented out for testing, so that only even hints, answers, solutions may appear in the "solutions" -->
            <!-- <hint>
                <p><m>f^{-1}(x) = (x+1)/(x-1)</m>.</p>
            </hint> -->
        </exercise>

        <exercise number="24">
            <statement>
                <p>Let <m>f: X \rightarrow Y</m> be a map with <m>A_1, A_2 \subset X</m> and <m>B_1, B_2 \subset Y</m>.</p>
                <ol>
                    <li><p>Prove <m>f( A_1 \cup A_2 ) = f( A_1) \cup f( A_2 )</m>.</p></li>
                    <li><p>Prove <m>f( A_1 \cap A_2 ) \subset f( A_1) \cap f( A_2 )</m>.  Give an example in which equality fails.</p></li>
                    <li><p>Prove <m>f^{-1}( B_1 \cup B_2 ) = f^{-1}( B_1) \cup f^{-1}(B_2 )</m>, where <me>f^{-1}(B) = \{ x \in X : f(x) \in B \}.</me></p></li>
                    <li><p>Prove <m>f^{-1}( B_1 \cap B_2 ) = f^{-1}( B_1) \cap f^{-1}( B_2 )</m>.</p></li>
                    <li><p>Prove <m>f^{-1}( Y \setminus B_1 ) = X \setminus f^{-1}( B_1)</m>.</p></li>
                </ol>
            </statement>
            <hint>
                <p>(a) Let <m>y \in f(A_1 \cup A_2)</m>.  Then there exists an <m>x \in A_1 \cup A_2</m> such that <m>f(x) = y</m>.  Hence, <m> y \in f(A_1)</m> or <m>f(A_2) </m>.  Therefore, <m> y \in f(A_1) \cup f(A_2)</m>. Consequently, <m> f(A_1 \cup A_2) \subset f(A_1) \cup f(A_2)</m>. Conversely, if <m>y \in f(A_1) \cup f(A_2)</m>, then <m> y \in f(A_1)</m> or <m>f(A_2)</m>.  Hence, there exists an <m>x \in A_1</m> or there exists an <m>x \in A_2</m> such that <m>f(x) = y</m>.  Thus, there exists an <m>x \in A_1 \cup A_2</m> such that <m>f(x) = y</m>.  Therefore, <m> f(A_1) \cup f(A_2) \subset f(A_1 \cup A_2)</m>, and <m>f(A_1 \cup A_2) = f(A_1) \cup f(A_2)</m>.</p>
            </hint>
        </exercise>

        <exercise number="25">
            <statement>
                <p>Determine whether or not the following relations are equivalence relations on the given set.  If the relation is an equivalence relation, describe the partition given by it.  If the relation is not an equivalence relation, state why it fails to be one.</p>
                <ol cols="2">
                    <li><p><m>x \sim y</m> in <m>{\mathbb R}</m> if <m>x \geq y</m></p></li>
                    <li><p><m>m \sim n</m> in <m>{\mathbb Z}</m> if <m>mn &gt; 0</m></p></li>
                    <li><p><m>x \sim y</m> in <m>{\mathbb R}</m> if <m>|x - y| \leq 4</m></p></li>
                    <li><p><m>m \sim n</m> in <m>{\mathbb Z}</m> if <m>m \equiv n \pmod{6}</m></p></li>
                </ol>
            </statement>
            <!-- commented out for testing, so that only even hints, answers, solutions may appear in the "solutions" -->
            <!-- <hint>
                <p>(a) NThe relation fails to be symmetric. (b) The relation is not reflexive, since 0 is not equivalent to itself. (c) The relation is not transitive.</p>
            </hint> -->
        </exercise>

        <exercise number="26">
            <statement>
                <p>Define a relation <m>\sim</m> on <m>{\mathbb R}^2</m> by stating that <m>(a, b) \sim (c, d)</m> if and only if <m>a^2 + b^2 \leq c^2 + d^2</m>. Show that <m>\sim</m> is reflexive and transitive but not symmetric.</p>
            </statement>
        </exercise>

        <exercise number="27">
            <statement>
                <p>Show that an <m>m \times n</m> matrix gives rise to a well-defined  map from <m>{\mathbb R}^n</m> to <m>{\mathbb R}^m</m>.</p>
            </statement>
        </exercise>

        <exercise number="28">
            <statement>
                <p>Find the error in the following argument by providing a counterexample. <q>The reflexive property is redundant in the axioms for an equivalence relation.  If <m>x \sim y</m>, then <m>y \sim x</m> by the symmetric property.  Using the transitive property, we can deduce that <m>x \sim x</m>.</q> </p>
            </statement>
            <hint>
                <p>Let <m>X = {\mathbb N} \cup \{ \sqrt{2}\, \}</m> and define <m>x \sim y</m> if <m>x + y \in {\mathbb N}</m>.</p>
            </hint>
        </exercise>

        <exercise number="29">
            <title>Projective Real Line</title>
            <statement>
                <p>Define a relation on <m>{\mathbb R}^2 \setminus  \{ (0,0) \}</m> by letting <m>(x_1, y_1) \sim (x_2, y_2)</m> if there exists a nonzero real number <m>\lambda</m> such that <m>(x_1, y_1)  = ( \lambda x_2, \lambda y_2)</m>.  Prove that <m>\sim</m> defines an equivalence relation on <m>{\mathbb R}^2 \setminus (0,0)</m>.  What are the corresponding  equivalence classes?  This equivalence relation defines the projective line, denoted by  <m>{\mathbb P}({\mathbb R}) </m>, which is very important in geometry.</p>
            </statement>
        </exercise>
    </subexercises>

</exercises>

Warm-up

View Source for subexercises
<subexercises>
    <title>Warm-up</title>
    <introduction>
        <p>
            This is a meaningless subdivision of the exercises for the sake of testing output.
        </p>
    </introduction>

    <exercise number="1">
        <statement>
            <p>Suppose that<md>
                <mrow>A &amp; = \{ x : x \in \mathbb N \text{ and } x \text{ is even} \},</mrow>
                <mrow>B &amp; = \{x : x \in \mathbb N \text{ and } x \text{ is prime}\},</mrow>
                <mrow>C &amp; = \{ x : x \in \mathbb N \text{ and } x \text{ is a multiple of 5}\}.</mrow>
            </md></p>
            <p>Describe each of the following sets.</p>
            <ol cols="2">
                <li><p><m>A \cap B</m></p></li>
                <li><p><m>B \cap C</m></p></li>
                <li><p><m>A \cup B</m></p></li>
                <li><p><m>A \cap (B \cup C)</m></p></li>
            </ol>
        </statement>
        <!-- commented out for testing, so that only even hints, answers, solutions may appear in the "solutions" -->
        <!-- <hint>
            <p>(a) <m>A \cap B = \{ 2 \}</m>; (b) <m>B \cap C = \{ 5 \}</m>.</p>
        </hint> -->
    </exercise>

    <exercise number="2">
        <statement>
            <p>If <m>A = \{ a, b, c \}</m>, <m>B = \{ 1, 2, 3 \}</m>, <m>C = \{ x \}</m>, and <m>D = \emptyset</m>, list all of the elements in each of the following sets.</p>
            <ol cols="2">
                <li><p><m>A \times B</m></p></li>
                <li><p><m>B \times A</m></p></li>
                <li><p><m>A \times B \times C</m></p></li>
                <li><p><m>A \times D</m></p></li>
            </ol>
        </statement>
        <hint>
            <p>(a) <m>A \times B = \{ (a,1), (a,2), (a,3), (b,1), (b,2), (b,3), (c,1), (c,2), (c,3) \}</m>; (d) <m>A \times D = \emptyset</m>.</p>
        </hint>
    </exercise>

    <exercise number="3">
        <statement>
            <p>Find an example of two nonempty sets <m>A</m> and <m>B</m> for which <m>A \times B = B \times A</m> is true.</p>
        </statement>
    </exercise>

    <exercise number="4">
        <statement>
            <p>Prove  <m>A \cup \emptyset = A</m> and <m>A \cap \emptyset = \emptyset</m>.</p>
        </statement>
    </exercise>

    <exercise number="5">
        <statement>
            <p>Prove <m>A \cup B = B \cup A</m> and <m>A \cap B = B \cap A</m>.</p>
        </statement>
    </exercise>

    <exercise number="6">
        <statement>
            <p>Prove <m>A \cup (B \cap C) = (A \cup B) \cap (A \cup C)</m>.</p>
        </statement>
        <hint>
            <p>If <m>x \in A \cup (B \cap C)</m>, then either <m>x \in A</m> or <m>x \in B \cap C</m>.  Thus,   <m> x \in A \cup B</m> and <m>A \cup C</m>.  Hence, <m> x \in (A \cup B) \cap (A \cup C)</m>. Therefore, <m>  A \cup (B \cap C) \subset (A \cup B) \cap (A \cup C)</m>.  Conversely, if <m>x \in (A \cup B) \cap (A \cup C)</m>, then <m>x \in A \cup B</m> and <m>A \cup C</m>. Thus, <m>x \in A</m> or <m>x</m> is in both <m>B</m> and <m>C</m>. So <m>x \in A \cup (B \cap C)</m> and therefore <m>(A \cup B) \cap (A \cup C) \subset A \cup (B \cap C)</m>. Hence, <m>A \cup (B \cap C) = (A \cup B) \cap (A \cup C)</m>.</p>
        </hint>
    </exercise>

    <exercise number="7">
        <statement>
            <p>Prove <m>A \cap (B \cup C) = (A \cap B) \cup (A \cap C)</m>.</p>
        </statement>
    </exercise>

    <exercise number="8">
        <statement>
            <p>Prove  <m>A \subset B</m> if and only if <m>A \cap B = A</m>.</p>
        </statement>
    </exercise>

    <exercise number="9">
        <statement>
            <p>Prove <m>(A \cap B)' = A' \cup B'</m>.</p>
        </statement>
    </exercise>

    <exercise number="10">
        <statement>
            <p>Prove  <m>A \cup B = (A \cap B) \cup (A \setminus B) \cup (B \setminus A)</m>.</p>
        </statement>
        <hint>
            <p><m>(A \cap B) \cup (A \setminus B) \cup (B \setminus A) = (A \cap B) \cup (A \cap B') \cup (B \cap A') = [A \cap (B \cup B')] \cup (B \cap A') = A \cup (B \cap A') = (A \cup B) \cap (A \cup A') = A \cup B</m>.</p>
        </hint>
    </exercise>

    <exercise number="11">
        <statement>
            <p>Prove  <m>(A \cup B) \times C = (A \times C ) \cup (B \times C)</m>.</p>
        </statement>
    </exercise>

    <exercise number="12">
        <statement>
            <p>Prove  <m>(A \cap B) \setminus B = \emptyset</m>.</p>
        </statement>
    </exercise>

    <exercise number="13">
        <statement>
            <p>Prove  <m>(A \cup B) \setminus B = A \setminus B</m>.</p>
        </statement>
    </exercise>

    <exercise number="14">
        <statement>
            <p>Prove  <m>A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)</m>.</p>
        </statement>
        <hint>
            <p><m>A \setminus (B \cup C) = A \cap (B \cup C)' = (A \cap A) \cap (B' \cap C') = (A \cap B') \cap (A \cap C') = (A \setminus B) \cap (A \setminus C)</m>.</p>
        </hint>
    </exercise>
</subexercises>
This is a meaningless subdivision of the exercises for the sake of testing output.

1.

View Source for exercise
<exercise number="1">
    <statement>
        <p>Suppose that<md>
            <mrow>A &amp; = \{ x : x \in \mathbb N \text{ and } x \text{ is even} \},</mrow>
            <mrow>B &amp; = \{x : x \in \mathbb N \text{ and } x \text{ is prime}\},</mrow>
            <mrow>C &amp; = \{ x : x \in \mathbb N \text{ and } x \text{ is a multiple of 5}\}.</mrow>
        </md></p>
        <p>Describe each of the following sets.</p>
        <ol cols="2">
            <li><p><m>A \cap B</m></p></li>
            <li><p><m>B \cap C</m></p></li>
            <li><p><m>A \cup B</m></p></li>
            <li><p><m>A \cap (B \cup C)</m></p></li>
        </ol>
    </statement>
    <!-- commented out for testing, so that only even hints, answers, solutions may appear in the "solutions" -->
    <!-- <hint>
        <p>(a) <m>A \cap B = \{ 2 \}</m>; (b) <m>B \cap C = \{ 5 \}</m>.</p>
    </hint> -->
</exercise>
Suppose that
A={x:x∈N and x is even},B={x:x∈N and x is prime},C={x:x∈N and x is a multiple of 5}.
Describe each of the following sets.
  1. A∩B
  2. B∩C
  3. AβˆͺB
  4. A∩(BβˆͺC)

2.

View Source for exercise
<exercise number="2">
    <statement>
        <p>If <m>A = \{ a, b, c \}</m>, <m>B = \{ 1, 2, 3 \}</m>, <m>C = \{ x \}</m>, and <m>D = \emptyset</m>, list all of the elements in each of the following sets.</p>
        <ol cols="2">
            <li><p><m>A \times B</m></p></li>
            <li><p><m>B \times A</m></p></li>
            <li><p><m>A \times B \times C</m></p></li>
            <li><p><m>A \times D</m></p></li>
        </ol>
    </statement>
    <hint>
        <p>(a) <m>A \times B = \{ (a,1), (a,2), (a,3), (b,1), (b,2), (b,3), (c,1), (c,2), (c,3) \}</m>; (d) <m>A \times D = \emptyset</m>.</p>
    </hint>
</exercise>
If A={a,b,c}, B={1,2,3}, C={x}, and D=βˆ…, list all of the elements in each of the following sets.
  1. AΓ—B
  2. BΓ—A
  3. AΓ—BΓ—C
  4. AΓ—D
Hint.
View Source for hint
<hint>
    <p>(a) <m>A \times B = \{ (a,1), (a,2), (a,3), (b,1), (b,2), (b,3), (c,1), (c,2), (c,3) \}</m>; (d) <m>A \times D = \emptyset</m>.</p>
</hint>
(a) AΓ—B={(a,1),(a,2),(a,3),(b,1),(b,2),(b,3),(c,1),(c,2),(c,3)}; (d) AΓ—D=βˆ….

3.

View Source for exercise
<exercise number="3">
    <statement>
        <p>Find an example of two nonempty sets <m>A</m> and <m>B</m> for which <m>A \times B = B \times A</m> is true.</p>
    </statement>
</exercise>
Find an example of two nonempty sets A and B for which AΓ—B=BΓ—A is true.

4.

View Source for exercise
<exercise number="4">
    <statement>
        <p>Prove  <m>A \cup \emptyset = A</m> and <m>A \cap \emptyset = \emptyset</m>.</p>
    </statement>
</exercise>
Prove Aβˆͺβˆ…=A and Aβˆ©βˆ…=βˆ….

5.

View Source for exercise
<exercise number="5">
    <statement>
        <p>Prove <m>A \cup B = B \cup A</m> and <m>A \cap B = B \cap A</m>.</p>
    </statement>
</exercise>
Prove AβˆͺB=BβˆͺA and A∩B=B∩A.

6.

View Source for exercise
<exercise number="6">
    <statement>
        <p>Prove <m>A \cup (B \cap C) = (A \cup B) \cap (A \cup C)</m>.</p>
    </statement>
    <hint>
        <p>If <m>x \in A \cup (B \cap C)</m>, then either <m>x \in A</m> or <m>x \in B \cap C</m>.  Thus,   <m> x \in A \cup B</m> and <m>A \cup C</m>.  Hence, <m> x \in (A \cup B) \cap (A \cup C)</m>. Therefore, <m>  A \cup (B \cap C) \subset (A \cup B) \cap (A \cup C)</m>.  Conversely, if <m>x \in (A \cup B) \cap (A \cup C)</m>, then <m>x \in A \cup B</m> and <m>A \cup C</m>. Thus, <m>x \in A</m> or <m>x</m> is in both <m>B</m> and <m>C</m>. So <m>x \in A \cup (B \cap C)</m> and therefore <m>(A \cup B) \cap (A \cup C) \subset A \cup (B \cap C)</m>. Hence, <m>A \cup (B \cap C) = (A \cup B) \cap (A \cup C)</m>.</p>
    </hint>
</exercise>
Prove Aβˆͺ(B∩C)=(AβˆͺB)∩(AβˆͺC).
Hint.
View Source for hint
<hint>
    <p>If <m>x \in A \cup (B \cap C)</m>, then either <m>x \in A</m> or <m>x \in B \cap C</m>.  Thus,   <m> x \in A \cup B</m> and <m>A \cup C</m>.  Hence, <m> x \in (A \cup B) \cap (A \cup C)</m>. Therefore, <m>  A \cup (B \cap C) \subset (A \cup B) \cap (A \cup C)</m>.  Conversely, if <m>x \in (A \cup B) \cap (A \cup C)</m>, then <m>x \in A \cup B</m> and <m>A \cup C</m>. Thus, <m>x \in A</m> or <m>x</m> is in both <m>B</m> and <m>C</m>. So <m>x \in A \cup (B \cap C)</m> and therefore <m>(A \cup B) \cap (A \cup C) \subset A \cup (B \cap C)</m>. Hence, <m>A \cup (B \cap C) = (A \cup B) \cap (A \cup C)</m>.</p>
</hint>
If x∈Aβˆͺ(B∩C), then either x∈A or x∈B∩C. Thus, x∈AβˆͺB and AβˆͺC. Hence, x∈(AβˆͺB)∩(AβˆͺC). Therefore, Aβˆͺ(B∩C)βŠ‚(AβˆͺB)∩(AβˆͺC). Conversely, if x∈(AβˆͺB)∩(AβˆͺC), then x∈AβˆͺB and AβˆͺC. Thus, x∈A or x is in both B and C. So x∈Aβˆͺ(B∩C) and therefore (AβˆͺB)∩(AβˆͺC)βŠ‚Aβˆͺ(B∩C). Hence, Aβˆͺ(B∩C)=(AβˆͺB)∩(AβˆͺC).

7.

View Source for exercise
<exercise number="7">
    <statement>
        <p>Prove <m>A \cap (B \cup C) = (A \cap B) \cup (A \cap C)</m>.</p>
    </statement>
</exercise>
Prove A∩(BβˆͺC)=(A∩B)βˆͺ(A∩C).

8.

View Source for exercise
<exercise number="8">
    <statement>
        <p>Prove  <m>A \subset B</m> if and only if <m>A \cap B = A</m>.</p>
    </statement>
</exercise>
Prove AβŠ‚B if and only if A∩B=A.

9.

View Source for exercise
<exercise number="9">
    <statement>
        <p>Prove <m>(A \cap B)' = A' \cup B'</m>.</p>
    </statement>
</exercise>
Prove (A∩B)β€²=Aβ€²βˆͺBβ€².

10.

View Source for exercise
<exercise number="10">
    <statement>
        <p>Prove  <m>A \cup B = (A \cap B) \cup (A \setminus B) \cup (B \setminus A)</m>.</p>
    </statement>
    <hint>
        <p><m>(A \cap B) \cup (A \setminus B) \cup (B \setminus A) = (A \cap B) \cup (A \cap B') \cup (B \cap A') = [A \cap (B \cup B')] \cup (B \cap A') = A \cup (B \cap A') = (A \cup B) \cap (A \cup A') = A \cup B</m>.</p>
    </hint>
</exercise>
Prove AβˆͺB=(A∩B)βˆͺ(Aβˆ–B)βˆͺ(Bβˆ–A).
Hint.
View Source for hint
<hint>
    <p><m>(A \cap B) \cup (A \setminus B) \cup (B \setminus A) = (A \cap B) \cup (A \cap B') \cup (B \cap A') = [A \cap (B \cup B')] \cup (B \cap A') = A \cup (B \cap A') = (A \cup B) \cap (A \cup A') = A \cup B</m>.</p>
</hint>
(A∩B)βˆͺ(Aβˆ–B)βˆͺ(Bβˆ–A)=(A∩B)βˆͺ(A∩Bβ€²)βˆͺ(B∩Aβ€²)=[A∩(BβˆͺBβ€²)]βˆͺ(B∩Aβ€²)=Aβˆͺ(B∩Aβ€²)=(AβˆͺB)∩(AβˆͺAβ€²)=AβˆͺB.

11.

View Source for exercise
<exercise number="11">
    <statement>
        <p>Prove  <m>(A \cup B) \times C = (A \times C ) \cup (B \times C)</m>.</p>
    </statement>
</exercise>
Prove (AβˆͺB)Γ—C=(AΓ—C)βˆͺ(BΓ—C).

12.

View Source for exercise
<exercise number="12">
    <statement>
        <p>Prove  <m>(A \cap B) \setminus B = \emptyset</m>.</p>
    </statement>
</exercise>
Prove (A∩B)βˆ–B=βˆ….

13.

View Source for exercise
<exercise number="13">
    <statement>
        <p>Prove  <m>(A \cup B) \setminus B = A \setminus B</m>.</p>
    </statement>
</exercise>
Prove (AβˆͺB)βˆ–B=Aβˆ–B.

14.

View Source for exercise
<exercise number="14">
    <statement>
        <p>Prove  <m>A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)</m>.</p>
    </statement>
    <hint>
        <p><m>A \setminus (B \cup C) = A \cap (B \cup C)' = (A \cap A) \cap (B' \cap C') = (A \cap B') \cap (A \cap C') = (A \setminus B) \cap (A \setminus C)</m>.</p>
    </hint>
</exercise>
Prove Aβˆ–(BβˆͺC)=(Aβˆ–B)∩(Aβˆ–C).
Hint.
View Source for hint
<hint>
    <p><m>A \setminus (B \cup C) = A \cap (B \cup C)' = (A \cap A) \cap (B' \cap C') = (A \cap B') \cap (A \cap C') = (A \setminus B) \cap (A \setminus C)</m>.</p>
</hint>
Aβˆ–(BβˆͺC)=A∩(BβˆͺC)β€²=(A∩A)∩(Bβ€²βˆ©Cβ€²)=(A∩Bβ€²)∩(A∩Cβ€²)=(Aβˆ–B)∩(Aβˆ–C).

More Exercises

View Source for subexercises
<subexercises>
    <title>More Exercises</title>
    <introduction>
        <p>
            This is a meaningless subdivision of the exercises for the sake of testing output.
        </p>
    </introduction>

    <exercise number="15">
        <statement>
            <p>Prove  <m>A \cap (B \setminus C) = (A \cap B) \setminus (A \cap C)</m>.</p>
        </statement>
    </exercise>

    <exercise number="16">
        <statement>
            <p>Prove  <m>(A \setminus B) \cup (B \setminus A) = (A \cup B) \setminus (A \cap B)</m>.</p>
        </statement>
    </exercise>

    <exercise number="17">
        <statement>
            <p>Which of the following relations <m>f: {\mathbb Q} \rightarrow {\mathbb Q}</m> define a mapping? In each case, supply a reason why <m>f</m> is or is not a mapping.</p>
            <ol cols="2">
                <li><p><m>\displaystyle f(p/q) = \frac{p+ 1}{p - 2}</m></p></li>
                <li><p><m>\displaystyle f(p/q) = \frac{3p}{3q}</m></p></li>
                <li><p><m>\displaystyle f(p/q) = \frac{p+q}{q^2}</m></p></li>
                <li><p><m>\displaystyle f(p/q) = \frac{3 p^2}{7 q^2} - \frac{p}{q}</m></p></li>
            </ol>
        </statement>
        <!-- commented out for testing, so that only even hints, answers, solutions may appear in the "solutions" -->
        <!-- <hint>
            <p>(a) Not a map since <m>f(2/3)</m> is undefined; (b) this is a map; (c) not a map, since <m>f(1/2) = 3/4</m> but <m>f(2/4)=3/8</m>; (d) this is a map.</p>
        </hint> -->
    </exercise>

    <exercise number="18">
        <statement>
            <p>Determine which of the following functions are one-to-one and which are onto.  If the function is not onto, determine its range.</p>
            <ol>
                <li><p><m>f: {\mathbb R} \rightarrow {\mathbb R}</m> defined by <m>f(x) = e^x</m></p></li>
                <li><p><m>f: {\mathbb Z} \rightarrow {\mathbb Z}</m> defined by <m>f(n) = n^2 + 3</m></p></li>
                <li><p><m>f: {\mathbb R} \rightarrow {\mathbb R}</m> defined by <m>f(x) = \sin x</m></p></li>
                <li><p><m>f: {\mathbb Z} \rightarrow {\mathbb Z}</m> defined by <m>f(x) = x^2</m></p></li>
            </ol>
        </statement>
        <hint>
            <p>(a) <m>f</m> is one-to-one but not onto. <m>f({\mathbb R} ) = \{ x \in {\mathbb R} : x \gt 0 \}</m>.  (c) <m>f</m> is neither one-to-one nor onto.  <m>f(\mathbb R) = \{ x : -1 \leq x \leq 1 \}</m>.</p>
        </hint>
    </exercise>

    <exercise number="19">
        <statement>
            <p>Let <m>f :A \rightarrow B</m> and <m>g : B \rightarrow C</m> be invertible mappings; that is, mappings such that <m>f^{-1}</m> and <m>g^{-1}</m> exist. Show that <m>(g \circ f)^{-1} =f^{-1} \circ g^{-1}</m>.</p>
        </statement>
    </exercise>

    <exercise number="20">
        <statement>
            <ol>
                <li><p>Define a function <m>f: {\mathbb N} \rightarrow {\mathbb N}</m> that is one-to-one but not onto.</p></li>
                 <li><p>Define a function <m>f: {\mathbb N} \rightarrow {\mathbb N}</m> that is onto but not one-to-one.</p></li>
            </ol>
        </statement>
        <hint>
            <p>(a) <m>f(n) = n + 1</m>.</p>
        </hint>
    </exercise>

    <exercise number="21">
        <statement>
            <p>Prove the relation defined on <m>{\mathbb R}^2</m> by <m>(x_1, y_1 ) \sim (x_2, y_2)</m> if <m>x_1^2 + y_1^2 = x_2^2 + y_2^2</m> is  an equivalence relation.</p>
        </statement>
    </exercise>

    <exercise number="22">
        <statement>
            <p>Let <m>f : A \rightarrow B</m> and <m>g : B \rightarrow C</m> be maps.</p>
            <ol>
                <li><p>If <m>f</m> and <m>g</m> are both one-to-one functions, show that <m>g \circ f</m> is one-to-one.</p></li>
                <li><p>If <m>g \circ f</m> is onto, show that <m>g</m> is onto.</p></li>
                <li><p>If <m>g \circ f</m> is one-to-one, show that <m>f</m> is one-to-one.</p></li>
                <li><p>If <m>g \circ f</m> is one-to-one and <m>f</m> is onto, show that <m>g</m> is one-to-one.</p></li>
                <li><p>If <m>g \circ f</m> is onto and <m>g</m> is one-to-one, show that <m>f</m> is onto.</p></li>
            </ol>
        </statement>
        <hint>
            <p>(a) Let <m>x, y \in A</m>. Then <m>g(f(x)) = (g \circ f)(x) = (g \circ f)(y) = g(f(y))</m>.  Thus, <m>f(x) = f(y)</m> and <m>x = y</m>,  so <m>g \circ f</m> is one-to-one. (b) Let <m>c \in C</m>, then <m>c = (g \circ f)(x) = g(f(x))</m> for some <m>x \in A</m>. Since <m>f(x) \in B</m>, <m>g</m> is onto.</p>
        </hint>
    </exercise>

    <exercise number="23">
        <statement>
            <p>Define a function on the real numbers by
                <me>f(x) = \frac{x + 1}{x - 1}.</me>
            What are the domain and range of <m>f</m>? What is the inverse of <m>f</m>?  Compute <m>f \circ f^{-1}</m> and <m>f^{-1} \circ f</m>.</p>
        </statement>
        <!-- commented out for testing, so that only even hints, answers, solutions may appear in the "solutions" -->
        <!-- <hint>
            <p><m>f^{-1}(x) = (x+1)/(x-1)</m>.</p>
        </hint> -->
    </exercise>

    <exercise number="24">
        <statement>
            <p>Let <m>f: X \rightarrow Y</m> be a map with <m>A_1, A_2 \subset X</m> and <m>B_1, B_2 \subset Y</m>.</p>
            <ol>
                <li><p>Prove <m>f( A_1 \cup A_2 ) = f( A_1) \cup f( A_2 )</m>.</p></li>
                <li><p>Prove <m>f( A_1 \cap A_2 ) \subset f( A_1) \cap f( A_2 )</m>.  Give an example in which equality fails.</p></li>
                <li><p>Prove <m>f^{-1}( B_1 \cup B_2 ) = f^{-1}( B_1) \cup f^{-1}(B_2 )</m>, where <me>f^{-1}(B) = \{ x \in X : f(x) \in B \}.</me></p></li>
                <li><p>Prove <m>f^{-1}( B_1 \cap B_2 ) = f^{-1}( B_1) \cap f^{-1}( B_2 )</m>.</p></li>
                <li><p>Prove <m>f^{-1}( Y \setminus B_1 ) = X \setminus f^{-1}( B_1)</m>.</p></li>
            </ol>
        </statement>
        <hint>
            <p>(a) Let <m>y \in f(A_1 \cup A_2)</m>.  Then there exists an <m>x \in A_1 \cup A_2</m> such that <m>f(x) = y</m>.  Hence, <m> y \in f(A_1)</m> or <m>f(A_2) </m>.  Therefore, <m> y \in f(A_1) \cup f(A_2)</m>. Consequently, <m> f(A_1 \cup A_2) \subset f(A_1) \cup f(A_2)</m>. Conversely, if <m>y \in f(A_1) \cup f(A_2)</m>, then <m> y \in f(A_1)</m> or <m>f(A_2)</m>.  Hence, there exists an <m>x \in A_1</m> or there exists an <m>x \in A_2</m> such that <m>f(x) = y</m>.  Thus, there exists an <m>x \in A_1 \cup A_2</m> such that <m>f(x) = y</m>.  Therefore, <m> f(A_1) \cup f(A_2) \subset f(A_1 \cup A_2)</m>, and <m>f(A_1 \cup A_2) = f(A_1) \cup f(A_2)</m>.</p>
        </hint>
    </exercise>

    <exercise number="25">
        <statement>
            <p>Determine whether or not the following relations are equivalence relations on the given set.  If the relation is an equivalence relation, describe the partition given by it.  If the relation is not an equivalence relation, state why it fails to be one.</p>
            <ol cols="2">
                <li><p><m>x \sim y</m> in <m>{\mathbb R}</m> if <m>x \geq y</m></p></li>
                <li><p><m>m \sim n</m> in <m>{\mathbb Z}</m> if <m>mn &gt; 0</m></p></li>
                <li><p><m>x \sim y</m> in <m>{\mathbb R}</m> if <m>|x - y| \leq 4</m></p></li>
                <li><p><m>m \sim n</m> in <m>{\mathbb Z}</m> if <m>m \equiv n \pmod{6}</m></p></li>
            </ol>
        </statement>
        <!-- commented out for testing, so that only even hints, answers, solutions may appear in the "solutions" -->
        <!-- <hint>
            <p>(a) NThe relation fails to be symmetric. (b) The relation is not reflexive, since 0 is not equivalent to itself. (c) The relation is not transitive.</p>
        </hint> -->
    </exercise>

    <exercise number="26">
        <statement>
            <p>Define a relation <m>\sim</m> on <m>{\mathbb R}^2</m> by stating that <m>(a, b) \sim (c, d)</m> if and only if <m>a^2 + b^2 \leq c^2 + d^2</m>. Show that <m>\sim</m> is reflexive and transitive but not symmetric.</p>
        </statement>
    </exercise>

    <exercise number="27">
        <statement>
            <p>Show that an <m>m \times n</m> matrix gives rise to a well-defined  map from <m>{\mathbb R}^n</m> to <m>{\mathbb R}^m</m>.</p>
        </statement>
    </exercise>

    <exercise number="28">
        <statement>
            <p>Find the error in the following argument by providing a counterexample. <q>The reflexive property is redundant in the axioms for an equivalence relation.  If <m>x \sim y</m>, then <m>y \sim x</m> by the symmetric property.  Using the transitive property, we can deduce that <m>x \sim x</m>.</q> </p>
        </statement>
        <hint>
            <p>Let <m>X = {\mathbb N} \cup \{ \sqrt{2}\, \}</m> and define <m>x \sim y</m> if <m>x + y \in {\mathbb N}</m>.</p>
        </hint>
    </exercise>

    <exercise number="29">
        <title>Projective Real Line</title>
        <statement>
            <p>Define a relation on <m>{\mathbb R}^2 \setminus  \{ (0,0) \}</m> by letting <m>(x_1, y_1) \sim (x_2, y_2)</m> if there exists a nonzero real number <m>\lambda</m> such that <m>(x_1, y_1)  = ( \lambda x_2, \lambda y_2)</m>.  Prove that <m>\sim</m> defines an equivalence relation on <m>{\mathbb R}^2 \setminus (0,0)</m>.  What are the corresponding  equivalence classes?  This equivalence relation defines the projective line, denoted by  <m>{\mathbb P}({\mathbb R}) </m>, which is very important in geometry.</p>
        </statement>
    </exercise>
</subexercises>
This is a meaningless subdivision of the exercises for the sake of testing output.

15.

View Source for exercise
<exercise number="15">
    <statement>
        <p>Prove  <m>A \cap (B \setminus C) = (A \cap B) \setminus (A \cap C)</m>.</p>
    </statement>
</exercise>
Prove A∩(Bβˆ–C)=(A∩B)βˆ–(A∩C).

16.

View Source for exercise
<exercise number="16">
    <statement>
        <p>Prove  <m>(A \setminus B) \cup (B \setminus A) = (A \cup B) \setminus (A \cap B)</m>.</p>
    </statement>
</exercise>
Prove (Aβˆ–B)βˆͺ(Bβˆ–A)=(AβˆͺB)βˆ–(A∩B).

17.

View Source for exercise
<exercise number="17">
    <statement>
        <p>Which of the following relations <m>f: {\mathbb Q} \rightarrow {\mathbb Q}</m> define a mapping? In each case, supply a reason why <m>f</m> is or is not a mapping.</p>
        <ol cols="2">
            <li><p><m>\displaystyle f(p/q) = \frac{p+ 1}{p - 2}</m></p></li>
            <li><p><m>\displaystyle f(p/q) = \frac{3p}{3q}</m></p></li>
            <li><p><m>\displaystyle f(p/q) = \frac{p+q}{q^2}</m></p></li>
            <li><p><m>\displaystyle f(p/q) = \frac{3 p^2}{7 q^2} - \frac{p}{q}</m></p></li>
        </ol>
    </statement>
    <!-- commented out for testing, so that only even hints, answers, solutions may appear in the "solutions" -->
    <!-- <hint>
        <p>(a) Not a map since <m>f(2/3)</m> is undefined; (b) this is a map; (c) not a map, since <m>f(1/2) = 3/4</m> but <m>f(2/4)=3/8</m>; (d) this is a map.</p>
    </hint> -->
</exercise>
Which of the following relations f:Q→Q define a mapping? In each case, supply a reason why f is or is not a mapping.
  1. f(p/q)=p+1pβˆ’2
  2. f(p/q)=3p3q
  3. f(p/q)=p+qq2
  4. f(p/q)=3p27q2βˆ’pq

18.

View Source for exercise
<exercise number="18">
    <statement>
        <p>Determine which of the following functions are one-to-one and which are onto.  If the function is not onto, determine its range.</p>
        <ol>
            <li><p><m>f: {\mathbb R} \rightarrow {\mathbb R}</m> defined by <m>f(x) = e^x</m></p></li>
            <li><p><m>f: {\mathbb Z} \rightarrow {\mathbb Z}</m> defined by <m>f(n) = n^2 + 3</m></p></li>
            <li><p><m>f: {\mathbb R} \rightarrow {\mathbb R}</m> defined by <m>f(x) = \sin x</m></p></li>
            <li><p><m>f: {\mathbb Z} \rightarrow {\mathbb Z}</m> defined by <m>f(x) = x^2</m></p></li>
        </ol>
    </statement>
    <hint>
        <p>(a) <m>f</m> is one-to-one but not onto. <m>f({\mathbb R} ) = \{ x \in {\mathbb R} : x \gt 0 \}</m>.  (c) <m>f</m> is neither one-to-one nor onto.  <m>f(\mathbb R) = \{ x : -1 \leq x \leq 1 \}</m>.</p>
    </hint>
</exercise>
Determine which of the following functions are one-to-one and which are onto. If the function is not onto, determine its range.
  1. f:R→R defined by f(x)=ex
  2. f:Z→Z defined by f(n)=n2+3
  3. f:Rβ†’R defined by f(x)=sin⁑x
  4. f:Z→Z defined by f(x)=x2
Hint.
View Source for hint
<hint>
    <p>(a) <m>f</m> is one-to-one but not onto. <m>f({\mathbb R} ) = \{ x \in {\mathbb R} : x \gt 0 \}</m>.  (c) <m>f</m> is neither one-to-one nor onto.  <m>f(\mathbb R) = \{ x : -1 \leq x \leq 1 \}</m>.</p>
</hint>
(a) f is one-to-one but not onto. f(R)={x∈R:x>0}. (c) f is neither one-to-one nor onto. f(R)={x:βˆ’1≀x≀1}.

19.

View Source for exercise
<exercise number="19">
    <statement>
        <p>Let <m>f :A \rightarrow B</m> and <m>g : B \rightarrow C</m> be invertible mappings; that is, mappings such that <m>f^{-1}</m> and <m>g^{-1}</m> exist. Show that <m>(g \circ f)^{-1} =f^{-1} \circ g^{-1}</m>.</p>
    </statement>
</exercise>
Let f:Aβ†’B and g:Bβ†’C be invertible mappings; that is, mappings such that fβˆ’1 and gβˆ’1 exist. Show that (g∘f)βˆ’1=fβˆ’1∘gβˆ’1.

20.

View Source for exercise
<exercise number="20">
    <statement>
        <ol>
            <li><p>Define a function <m>f: {\mathbb N} \rightarrow {\mathbb N}</m> that is one-to-one but not onto.</p></li>
             <li><p>Define a function <m>f: {\mathbb N} \rightarrow {\mathbb N}</m> that is onto but not one-to-one.</p></li>
        </ol>
    </statement>
    <hint>
        <p>(a) <m>f(n) = n + 1</m>.</p>
    </hint>
</exercise>
  1. Define a function f:N→N that is one-to-one but not onto.
  2. Define a function f:N→N that is onto but not one-to-one.
Hint.
View Source for hint
<hint>
    <p>(a) <m>f(n) = n + 1</m>.</p>
</hint>
(a) f(n)=n+1.

21.

View Source for exercise
<exercise number="21">
    <statement>
        <p>Prove the relation defined on <m>{\mathbb R}^2</m> by <m>(x_1, y_1 ) \sim (x_2, y_2)</m> if <m>x_1^2 + y_1^2 = x_2^2 + y_2^2</m> is  an equivalence relation.</p>
    </statement>
</exercise>
Prove the relation defined on R2 by (x1,y1)∼(x2,y2) if x12+y12=x22+y22 is an equivalence relation.

22.

View Source for exercise
<exercise number="22">
    <statement>
        <p>Let <m>f : A \rightarrow B</m> and <m>g : B \rightarrow C</m> be maps.</p>
        <ol>
            <li><p>If <m>f</m> and <m>g</m> are both one-to-one functions, show that <m>g \circ f</m> is one-to-one.</p></li>
            <li><p>If <m>g \circ f</m> is onto, show that <m>g</m> is onto.</p></li>
            <li><p>If <m>g \circ f</m> is one-to-one, show that <m>f</m> is one-to-one.</p></li>
            <li><p>If <m>g \circ f</m> is one-to-one and <m>f</m> is onto, show that <m>g</m> is one-to-one.</p></li>
            <li><p>If <m>g \circ f</m> is onto and <m>g</m> is one-to-one, show that <m>f</m> is onto.</p></li>
        </ol>
    </statement>
    <hint>
        <p>(a) Let <m>x, y \in A</m>. Then <m>g(f(x)) = (g \circ f)(x) = (g \circ f)(y) = g(f(y))</m>.  Thus, <m>f(x) = f(y)</m> and <m>x = y</m>,  so <m>g \circ f</m> is one-to-one. (b) Let <m>c \in C</m>, then <m>c = (g \circ f)(x) = g(f(x))</m> for some <m>x \in A</m>. Since <m>f(x) \in B</m>, <m>g</m> is onto.</p>
    </hint>
</exercise>
Let f:A→B and g:B→C be maps.
  1. If f and g are both one-to-one functions, show that g∘f is one-to-one.
  2. If g∘f is onto, show that g is onto.
  3. If g∘f is one-to-one, show that f is one-to-one.
  4. If g∘f is one-to-one and f is onto, show that g is one-to-one.
  5. If g∘f is onto and g is one-to-one, show that f is onto.
Hint.
View Source for hint
<hint>
    <p>(a) Let <m>x, y \in A</m>. Then <m>g(f(x)) = (g \circ f)(x) = (g \circ f)(y) = g(f(y))</m>.  Thus, <m>f(x) = f(y)</m> and <m>x = y</m>,  so <m>g \circ f</m> is one-to-one. (b) Let <m>c \in C</m>, then <m>c = (g \circ f)(x) = g(f(x))</m> for some <m>x \in A</m>. Since <m>f(x) \in B</m>, <m>g</m> is onto.</p>
</hint>
(a) Let x,y∈A. Then g(f(x))=(g∘f)(x)=(g∘f)(y)=g(f(y)). Thus, f(x)=f(y) and x=y, so g∘f is one-to-one. (b) Let c∈C, then c=(g∘f)(x)=g(f(x)) for some x∈A. Since f(x)∈B, g is onto.

23.

View Source for exercise
<exercise number="23">
    <statement>
        <p>Define a function on the real numbers by
            <me>f(x) = \frac{x + 1}{x - 1}.</me>
        What are the domain and range of <m>f</m>? What is the inverse of <m>f</m>?  Compute <m>f \circ f^{-1}</m> and <m>f^{-1} \circ f</m>.</p>
    </statement>
    <!-- commented out for testing, so that only even hints, answers, solutions may appear in the "solutions" -->
    <!-- <hint>
        <p><m>f^{-1}(x) = (x+1)/(x-1)</m>.</p>
    </hint> -->
</exercise>
Define a function on the real numbers by
f(x)=x+1xβˆ’1.
What are the domain and range of f? What is the inverse of f? Compute f∘fβˆ’1 and fβˆ’1∘f.

24.

View Source for exercise
<exercise number="24">
    <statement>
        <p>Let <m>f: X \rightarrow Y</m> be a map with <m>A_1, A_2 \subset X</m> and <m>B_1, B_2 \subset Y</m>.</p>
        <ol>
            <li><p>Prove <m>f( A_1 \cup A_2 ) = f( A_1) \cup f( A_2 )</m>.</p></li>
            <li><p>Prove <m>f( A_1 \cap A_2 ) \subset f( A_1) \cap f( A_2 )</m>.  Give an example in which equality fails.</p></li>
            <li><p>Prove <m>f^{-1}( B_1 \cup B_2 ) = f^{-1}( B_1) \cup f^{-1}(B_2 )</m>, where <me>f^{-1}(B) = \{ x \in X : f(x) \in B \}.</me></p></li>
            <li><p>Prove <m>f^{-1}( B_1 \cap B_2 ) = f^{-1}( B_1) \cap f^{-1}( B_2 )</m>.</p></li>
            <li><p>Prove <m>f^{-1}( Y \setminus B_1 ) = X \setminus f^{-1}( B_1)</m>.</p></li>
        </ol>
    </statement>
    <hint>
        <p>(a) Let <m>y \in f(A_1 \cup A_2)</m>.  Then there exists an <m>x \in A_1 \cup A_2</m> such that <m>f(x) = y</m>.  Hence, <m> y \in f(A_1)</m> or <m>f(A_2) </m>.  Therefore, <m> y \in f(A_1) \cup f(A_2)</m>. Consequently, <m> f(A_1 \cup A_2) \subset f(A_1) \cup f(A_2)</m>. Conversely, if <m>y \in f(A_1) \cup f(A_2)</m>, then <m> y \in f(A_1)</m> or <m>f(A_2)</m>.  Hence, there exists an <m>x \in A_1</m> or there exists an <m>x \in A_2</m> such that <m>f(x) = y</m>.  Thus, there exists an <m>x \in A_1 \cup A_2</m> such that <m>f(x) = y</m>.  Therefore, <m> f(A_1) \cup f(A_2) \subset f(A_1 \cup A_2)</m>, and <m>f(A_1 \cup A_2) = f(A_1) \cup f(A_2)</m>.</p>
    </hint>
</exercise>
Let f:Xβ†’Y be a map with A1,A2βŠ‚X and B1,B2βŠ‚Y.
  1. Prove f(A1βˆͺA2)=f(A1)βˆͺf(A2).
  2. Prove f(A1∩A2)βŠ‚f(A1)∩f(A2). Give an example in which equality fails.
  3. Prove fβˆ’1(B1βˆͺB2)=fβˆ’1(B1)βˆͺfβˆ’1(B2), where
    fβˆ’1(B)={x∈X:f(x)∈B}.
  4. Prove fβˆ’1(B1∩B2)=fβˆ’1(B1)∩fβˆ’1(B2).
  5. Prove fβˆ’1(Yβˆ–B1)=Xβˆ–fβˆ’1(B1).
Hint.
View Source for hint
<hint>
    <p>(a) Let <m>y \in f(A_1 \cup A_2)</m>.  Then there exists an <m>x \in A_1 \cup A_2</m> such that <m>f(x) = y</m>.  Hence, <m> y \in f(A_1)</m> or <m>f(A_2) </m>.  Therefore, <m> y \in f(A_1) \cup f(A_2)</m>. Consequently, <m> f(A_1 \cup A_2) \subset f(A_1) \cup f(A_2)</m>. Conversely, if <m>y \in f(A_1) \cup f(A_2)</m>, then <m> y \in f(A_1)</m> or <m>f(A_2)</m>.  Hence, there exists an <m>x \in A_1</m> or there exists an <m>x \in A_2</m> such that <m>f(x) = y</m>.  Thus, there exists an <m>x \in A_1 \cup A_2</m> such that <m>f(x) = y</m>.  Therefore, <m> f(A_1) \cup f(A_2) \subset f(A_1 \cup A_2)</m>, and <m>f(A_1 \cup A_2) = f(A_1) \cup f(A_2)</m>.</p>
</hint>
(a) Let y∈f(A1βˆͺA2). Then there exists an x∈A1βˆͺA2 such that f(x)=y. Hence, y∈f(A1) or f(A2). Therefore, y∈f(A1)βˆͺf(A2). Consequently, f(A1βˆͺA2)βŠ‚f(A1)βˆͺf(A2). Conversely, if y∈f(A1)βˆͺf(A2), then y∈f(A1) or f(A2). Hence, there exists an x∈A1 or there exists an x∈A2 such that f(x)=y. Thus, there exists an x∈A1βˆͺA2 such that f(x)=y. Therefore, f(A1)βˆͺf(A2)βŠ‚f(A1βˆͺA2), and f(A1βˆͺA2)=f(A1)βˆͺf(A2).

25.

View Source for exercise
<exercise number="25">
    <statement>
        <p>Determine whether or not the following relations are equivalence relations on the given set.  If the relation is an equivalence relation, describe the partition given by it.  If the relation is not an equivalence relation, state why it fails to be one.</p>
        <ol cols="2">
            <li><p><m>x \sim y</m> in <m>{\mathbb R}</m> if <m>x \geq y</m></p></li>
            <li><p><m>m \sim n</m> in <m>{\mathbb Z}</m> if <m>mn &gt; 0</m></p></li>
            <li><p><m>x \sim y</m> in <m>{\mathbb R}</m> if <m>|x - y| \leq 4</m></p></li>
            <li><p><m>m \sim n</m> in <m>{\mathbb Z}</m> if <m>m \equiv n \pmod{6}</m></p></li>
        </ol>
    </statement>
    <!-- commented out for testing, so that only even hints, answers, solutions may appear in the "solutions" -->
    <!-- <hint>
        <p>(a) NThe relation fails to be symmetric. (b) The relation is not reflexive, since 0 is not equivalent to itself. (c) The relation is not transitive.</p>
    </hint> -->
</exercise>
Determine whether or not the following relations are equivalence relations on the given set. If the relation is an equivalence relation, describe the partition given by it. If the relation is not an equivalence relation, state why it fails to be one.
  1. x∼y in R if xβ‰₯y
  2. m∼n in Z if mn>0
  3. x∼y in R if |xβˆ’y|≀4
  4. m∼n in Z if m≑n(mod6)

26.

View Source for exercise
<exercise number="26">
    <statement>
        <p>Define a relation <m>\sim</m> on <m>{\mathbb R}^2</m> by stating that <m>(a, b) \sim (c, d)</m> if and only if <m>a^2 + b^2 \leq c^2 + d^2</m>. Show that <m>\sim</m> is reflexive and transitive but not symmetric.</p>
    </statement>
</exercise>
Define a relation ∼ on R2 by stating that (a,b)∼(c,d) if and only if a2+b2≀c2+d2. Show that ∼ is reflexive and transitive but not symmetric.

27.

View Source for exercise
<exercise number="27">
    <statement>
        <p>Show that an <m>m \times n</m> matrix gives rise to a well-defined  map from <m>{\mathbb R}^n</m> to <m>{\mathbb R}^m</m>.</p>
    </statement>
</exercise>
Show that an mΓ—n matrix gives rise to a well-defined map from Rn to Rm.

28.

View Source for exercise
<exercise number="28">
    <statement>
        <p>Find the error in the following argument by providing a counterexample. <q>The reflexive property is redundant in the axioms for an equivalence relation.  If <m>x \sim y</m>, then <m>y \sim x</m> by the symmetric property.  Using the transitive property, we can deduce that <m>x \sim x</m>.</q> </p>
    </statement>
    <hint>
        <p>Let <m>X = {\mathbb N} \cup \{ \sqrt{2}\, \}</m> and define <m>x \sim y</m> if <m>x + y \in {\mathbb N}</m>.</p>
    </hint>
</exercise>
Find the error in the following argument by providing a counterexample. β€œThe reflexive property is redundant in the axioms for an equivalence relation. If x∼y, then y∼x by the symmetric property. Using the transitive property, we can deduce that x∼x.”
Hint.
View Source for hint
<hint>
    <p>Let <m>X = {\mathbb N} \cup \{ \sqrt{2}\, \}</m> and define <m>x \sim y</m> if <m>x + y \in {\mathbb N}</m>.</p>
</hint>
Let X=Nβˆͺ{2} and define x∼y if x+y∈N.

29. Projective Real Line.

View Source for exercise
<exercise number="29">
    <title>Projective Real Line</title>
    <statement>
        <p>Define a relation on <m>{\mathbb R}^2 \setminus  \{ (0,0) \}</m> by letting <m>(x_1, y_1) \sim (x_2, y_2)</m> if there exists a nonzero real number <m>\lambda</m> such that <m>(x_1, y_1)  = ( \lambda x_2, \lambda y_2)</m>.  Prove that <m>\sim</m> defines an equivalence relation on <m>{\mathbb R}^2 \setminus (0,0)</m>.  What are the corresponding  equivalence classes?  This equivalence relation defines the projective line, denoted by  <m>{\mathbb P}({\mathbb R}) </m>, which is very important in geometry.</p>
    </statement>
</exercise>
Define a relation on R2βˆ–{(0,0)} by letting (x1,y1)∼(x2,y2) if there exists a nonzero real number Ξ» such that (x1,y1)=(Ξ»x2,Ξ»y2). Prove that ∼ defines an equivalence relation on R2βˆ–(0,0). What are the corresponding equivalence classes? This equivalence relation defines the projective line, denoted by P(R), which is very important in geometry.
You have attempted 1 of 1 activities on this page.