Skip to main content
Logo image

PreTeXt Sample Book: Abstract Algebra (SAMPLE ONLY)

Appendix D Hints and Answers to Selected Exercises

1 Preliminaries
1.4 Exercises

Warm-up

1.4.2.
Hint.
(a) A×B={(a,1),(a,2),(a,3),(b,1),(b,2),(b,3),(c,1),(c,2),(c,3)}; (d) A×D=.
1.4.6.
Hint.
If xA(BC), then either xA or xBC. Thus, xAB and AC. Hence, x(AB)(AC). Therefore, A(BC)(AB)(AC). Conversely, if x(AB)(AC), then xAB and AC. Thus, xA or x is in both B and C. So xA(BC) and therefore (AB)(AC)A(BC). Hence, A(BC)=(AB)(AC).
1.4.10.
Hint.
(AB)(AB)(BA)=(AB)(AB)(BA)=[A(BB)](BA)=A(BA)=(AB)(AA)=AB.
1.4.14.
Hint.
A(BC)=A(BC)=(AA)(BC)=(AB)(AC)=(AB)(AC).

More Exercises

1.4.18.
Hint.
(a) f is one-to-one but not onto. f(R)={xR:x>0}. (c) f is neither one-to-one nor onto. f(R)={x:1x1}.
1.4.20.
Hint.
(a) f(n)=n+1.
1.4.22.
Hint.
(a) Let x,yA. Then g(f(x))=(gf)(x)=(gf)(y)=g(f(y)). Thus, f(x)=f(y) and x=y, so gf is one-to-one. (b) Let cC, then c=(gf)(x)=g(f(x)) for some xA. Since f(x)B, g is onto.
1.4.24.
Hint.
(a) Let yf(A1A2). Then there exists an xA1A2 such that f(x)=y. Hence, yf(A1) or f(A2). Therefore, yf(A1)f(A2). Consequently, f(A1A2)f(A1)f(A2). Conversely, if yf(A1)f(A2), then yf(A1) or f(A2). Hence, there exists an xA1 or there exists an xA2 such that f(x)=y. Thus, there exists an xA1A2 such that f(x)=y. Therefore, f(A1)f(A2)f(A1A2), and f(A1A2)=f(A1)f(A2).
1.4.28.
Hint.
Let X=N{2} and define xy if x+yN.

2 The Integers
2.4 Exercises

2.4.1.

Answer.
The base case, S(1):[1(1+1)(2(1)+1)]/6=1=12 is true.
Assume that S(k):12+22++k2=[k(k+1)(2k+1)]/6 is true. Then
12+22++k2+(k+1)2=[k(k+1)(2k+1)]/6+(k+1)2=[(k+1)((k+1)+1)(2(k+1)+1)]/6,
and so S(k+1) is true. Thus, S(n) is true for all positive integers n.

2.4.3.

Answer.
The base case, S(4):4!=24>16=24 is true. Assume S(k):k!>2k is true. Then (k+1)!=k!(k+1)>2k2=2k+1, so S(k+1) is true. Thus, S(n) is true for all positive integers n.

2.4.11.

Hint.
The base case, S(0):(1+x)01=00=0x is true. Assume S(k):(1+x)k1kx is true. Then
(1+x)k+11=(1+x)(1+x)k1=(1+x)k+x(1+x)k1kx+x(1+x)kkx+x=(k+1)x,
so S(k+1) is true. Therefore, S(n) is true for all positive integers n.

2.4.19.

Hint.
Use the Fundamental Theorem of Arithmetic.

2.4.23.

Hint.
Let S={sN:as, bs}. Then S, since |ab|S. By the Principle of Well-Ordering, S contains a least element m. To show uniqueness, suppose that an and bn for some nN. By the division algorithm, there exist unique integers q and r such that n=mq+r, where 0r<m. Since a and b divide both m, and n, it must be the case that a and b both divide r. Thus, r=0 by the minimality of m. Therefore, mn.

2.4.27.

Hint.
Since gcd(a,b)=1, there exist integers r and s such that ar+bs=1. Thus, acr+bcs=c. Since a divides both bc and itself, a must divide c.

2.4.29.

Hint.
Every prime must be of the form 2, 3, 6n+1, or 6n+5. Suppose there are only finitely many primes of the form 6k+5.

3 Groups
3.5 Exercises

3.5.1.

Hint.
(a) 3+7Z={,4,3,10,}; (c) 18+26Z; (e) 5+6Z.

3.5.2.

Hint.
(a) Not a group; (c) a group.

3.5.6.

Hint.
157111157115511177711151111751

3.5.8.

Hint.
Pick two matrices. Almost any pair will work.

3.5.15.

Hint.
There is a nonabelian group containing six elements.

3.5.16.

Hint.
Look at the symmetry group of an equilateral triangle or a square.

3.5.17.

Hint.
The are five different groups of order 8.

3.5.18.

Hint.
Let
σ=(12na1a2an)
be in Sn. All of the ais must be distinct. There are n ways to choose a1, n1 ways to choose a2, , 2 ways to choose an1, and only one way to choose an. Therefore, we can form σ in n(n1)21=n! ways.

3.5.25.

Hint.
(aba1)n=(aba1)(aba1)(aba1)=ab(aa1)b(aa1)bb(aa1)ba1=abna1.

3.5.31.

Hint.
Since abab=(ab)2=e=a2b2=aabb, we know that ba=ab.

3.5.35.

Hint.
H1={id}, H2={id,ρ1,ρ2}, H3={id,μ1}, H4={id,μ2}, H5={id,μ3}, S3.

3.5.41.

Hint.
The identity of G is 1=1+02. Since (a+b2)(c+d2)=(ac+2bd)+(ad+bc)2, G is closed under multiplication. Finally, (a+b2)1=a/(a22b2)b2/(a22b2).

3.5.46.

Hint.
Look at S3.

3.5.49.

Hint.
Since a4b=ba, it must be the case that b=a6b=a2ba, and we can conclude that ab=a3ba=ba.

3.5.55.

Answer.
1

3.5.56.

Answer.
2

3.5.57.

Answer.
n

3.5.58.

Answer.
n+1

3.5.59.

3.5.59.a
Answer.
2
3.5.59.b
3.5.59.b.i
Answer.
6
3.5.59.b.ii
Answer.
10

3.5.60.

3.5.60.a
Answer.
4
3.5.60.b
3.5.60.b.i
Answer.
8
3.5.60.b.ii
Answer.
12

5 Runestone Testing
5.8 True/False Exercises

5.8.1. True/False.

Hint.
Pn, the vector space of polynomials with degree at most n, has dimension n+1 by Theorem 3.2.16. [Cross-reference is just a demo, content is not relevant.] What happens if we relax the defintion and remove the parameter n?

5.9 Multiple Choice Exercises

5.9.1. Multiple-Choice, Not Randomized, One Answer.

Hint 1.
What did you see last time you went driving?
Hint 2.
Maybe go out for a drive?

5.9.2. Multiple-Choice, Not Randomized, Multiple Answers.

Hint.
Do you know the acronym…ROY G BIV for the colors of a rainbow, and their order?

5.9.3. Multiple-Choice, Randomized, One Answer.

Hint 1.
What did you see last time you went driving?
Hint 2.
Maybe go out for a drive?

5.9.4. Multiple-Choice, Randomized, Multiple Answers.

Hint.
Do you know the acronym…ROY G BIV for the colors of a rainbow, and their order?

5.9.5. Mathematical Multiple-Choice, Not Randomized, Multiple Answers.

Hint.
You can take a derivative on any one of the choices to see if it is correct or not, rather than using techniques of integration to find a single correct answer.

5.10 Parsons Exercises

5.10.1. Parsons Problem, Mathematical Proof.

Hint.
Dorothy will not be much help with this proof.

5.10.6. Parsons Problem, Mathematical Proof, Numbered Blocks.

Hint.
Dorothy will not be much help with this proof.

5.12 Matching Exercises

5.12.3. Matching Problem, Linear Algebra.

Hint.
For openers, a basis for a subspace must be a subset of the subspace.

5.13 Clickable Area Exercises

5.13.3. Clickable Areas, Text in a Table.

Hint.
Python boolean variables begin with capital latters.

5.18 Fill-In Exercises

5.18.10. Fill-In, Dynamic Math with Simple Numerical Answer.

5.18.11. Fill-In, Dynamic Math with Formulas as Answers.

5.18.12. Fill-In, Dynamic Math with Interdependent Formula Checking.

5.19 Hodgepodge

5.19.1. With Tasks in an Exercises Division.

5.19.1.a True/False.
Hint.
Pn, the vector space of polynomials with degree at most n, has dimension n+1 by Theorem 3.2.16. [Cross-reference is just a demo, content is not relevant.] What happens if we relax the defintion and remove the parameter n?

5.20 Exercises that are Timed

Timed Exercises

5.20.1. True/False.
Hint.
Pn, the vector space of polynomials with degree at most n, has dimension n+1 by Theorem 3.2.16. [Cross-reference is just a demo, content is not relevant.] What happens if we relax the defintion and remove the parameter n?
5.20.2. Multiple-Choice, Not Randomized, One Answer.
Hint 1.
What did you see last time you went driving?
Hint 2.
Maybe go out for a drive?

5.27 Group Exercises

5.27.1. Multiple-Choice, Not Randomized, One Answer.

Hint 1.
What did you see last time you went driving?
Hint 2.
Maybe go out for a drive?