Appendix C Answers to Selected Exercises
1 Linear Models
1.1 Creating a Linear Model
1.1.3 Problem Set 1.1
Skills Practice
1.1.3.9.
Applications
1.1.3.11.
Answer.
-
\(t\) (days) \(0\) \(5\) \(10\) \(15\) \(20\) \(h\) (inches) 6 16 26 36 46 -
\(\displaystyle h=6+2t\)
-
-
48 in
-
33 days
-
14 is the initial height of the plants in inches. 1.5 is the number of inches they grow each day.
1.1.3.13.
1.2 Graphs and Equations
1.2.6 Problem Set 1.2
Warm Up
1.2.6.9.
Skills Practice
Applications
1.2.6.25.
1.2.6.27.
1.2.6.29.
1.2.6.33.
1.3 Intercepts
1.3.6 Problem Set 1.3
Warm Up
1.3.6.1.
Skills Practice
1.3.6.9.
Answer.
-
\(\displaystyle (3,0), (0,5) \)
-
\(\displaystyle \left(\dfrac{1}{2},0\right), \left(0,\dfrac{-1}{4}\right) \)
-
\(\displaystyle \left(\dfrac{5}{2},0\right), \left(0,\dfrac{-3}{2}\right) \)
-
\(\displaystyle (p,0), (0,q) \)
1.3.6.11.
Applications
1.3.6.21.
1.3.6.23.
1.3.6.25.
Answer.
-
\(\displaystyle 2.40x + 3.20y = 19,200\)
-
-
The \(y\)-intercept, 6000 gallons, is the amount of premium that the gas station owner can buy if he buys no regular. The \(x\)-intercept, 8000 gallons, is the amount of regular he can buy if he buys no premium.
1.4 Slope
1.4.5 Problem Set 1.4
Warm Up
Skills Practice
1.4.5.9.
1.4.5.17.
Applications
1.4.5.21.
1.4.5.25.
1.4.5.27.
1.4.5.29.
1.5 Equations of Lines
1.5.6 Problem Set 1.5
Warm Up
Skills Practice
Applications
1.5.6.21.
1.5.6.23.
1.5.6.25.
1.5.6.27.
Answer.
-
\(55\degree\)F
-
9840 ft
-
-
\(m=\dfrac{-3}{820}\text{.}\) The temperature decreases 3 degrees for each increase in altitude of 820 feet.
-
\((19,133 \frac{1}{3}, 0)\text{.}\) At an altitude of \(19,133 \frac{1}{3}\) feet, the temperature is \(0\degree\)F. \((0,70)\text{.}\) At an altitude of 0 feet, the temperature is \(70\degree\)F.
1.5.6.29.
1.6 Chapter Summary and Review
1.6.3 Chapter 1 Review Problems
1.6.3.1.
1.6.3.2.
Answer.
-
\(t\) \(~ 5 ~\) \(~10~\) \(~15~\) \(~20~\) \(~25~\) \(R\) \(1960\) \(1820\) \(1680\) \(1540\) \(1400\) -
\(\displaystyle R = 2100 - 28t\)
-
-
\(t\)-intercept: The oil reserves will be gone in 2080; \(R\)-intercept: There were \(2100\) billion barrels of oil reserves in 2005.
1.6.3.3.
1.6.3.10.
1.6.3.11.
1.6.3.20.
1.6.3.27.
1.6.3.30.
1.6.3.33.
1.6.3.34.
1.6.3.35.
2 Applications of Linear Models
2.1 Linear Regression
2.1.5 Problem Set 2.1
Warm Up
2.1.5.1.
2.1.5.2.
Skills Practice
2.1.5.5.
Answer.
The slope is \(-2.5\text{,}\) which indicates that the snack bar sells 2.5 fewer cups of cocoa for each \(1\degree\text{C}\) increase in temperature. The \(C\)-intercept of 52 indicates that 52 cups of cocoa would be sold at a temperature of \(0\degree\text{C}\text{.}\) The \(T\)-intercept of 20.8 indicates that no cocoa will be sold at a temperature of \(20.8\degree\text{C}\text{.}\)
2.1.5.7.
Answer.
Applications
2.1.5.13.
2.1.5.15.
2.1.5.17.
2.1.5.19.
Answer.
-
-
The graph is above.
-
The slope tells us that the time it takes for a bird to attract a mate decreases by 0.85 days for every additional song it learns.
-
44.5 days
-
The \(C\)-intercept tells us that a warbler with a repretoire of 53 songs would acquire a mate immediately. The \(B\)-intercept tells us that a warbler with no songs would take 62 days to find a mate. These values make sense in context.
2.2 Linear Systems
2.2.5 Problem Set 2.2
Warm Up
2.2.5.1.
Answer.
2.2.5.3.
Skills Practice
Applications
2.2.5.13.
2.2.5.15.
2.2.5.17.
2.2.5.19.
2.3 Algebraic Solution of Systems
2.3.5 Problem Set 2.3
Warm Up
2.3.5.1.
Skills Practice
Applications
2.3.5.11.
2.3.5.13.
2.3.5.15.
Answer.
-
Raniās speed in still water: \(x\) Speed of the current: \(y\) Rate Time Distance Downstream \(x+y\) \(45\) \(6000\) Upstream \(x-y\) \(45\) \(4800\) -
\(\displaystyle 45(x+y)=6000 \)
-
\(\displaystyle 45(x-y)=4800 \)
-
Raniās speed in still water is 120 meters per minute, and the speed of the current is \(13\dfrac{1}{3} \) meters per minute.
2.3.5.17.
2.3.5.19.
2.4 Gaussian Reduction
2.4.6 Problem Set 2.4
Warm Up
2.4.6.3.
Skills Practice
Applications
2.5 Linear Inequalities in Two Variables
2.5.5 Problem Set 2.5
Warm Up
2.5.5.1.
2.5.5.3.
Answer.
-
The graph of the equation is a line, and the graph of the inequality is a half-plane. The line is the boundary of the half-plane but is not included in the solution to the inequality.
-
The graph of \(x + y\ge 10,000\) includes both the line \(x + y=10,000\) and the half-plane of the corresponding strict inequality.
Skills Practice
2.5.5.15.
Answer.
2.5.5.17.
Answer.
2.5.5.19.
Answer.
Applications
2.6 Chapter Summary and Review
2.6.3 Chapter 2 Review Problems
2.6.3.1.
2.6.3.2.
2.6.3.3.
2.6.3.4.
2.6.3.39.
2.6.3.40.
3 Quadratic Models
3.1 Extraction of Roots
3.1.9 Problem Set 3.1
Warm Up
3.1.9.1.
3.1.9.3.
3.1.9.4.
3.1.9.5.
Skills Practice
Applications
3.1.9.25.
3.1.9.27.
3.1.9.29.
3.2 Intercepts, Solutions, and Factors
3.2.6 Problem Set 3.2
Warm Up
3.2.6.5.
Skills Practice
3.2.6.27.
Applications
3.2.6.29.
3.2.6.31.
3.2.6.33.
3.2.6.34.
3.3 Graphing Parabolas
3.3.6 Problem Set 3.3
Warm Up
Skills Practice
3.3.6.9.
Applications
3.3.6.19.
3.4 Completing the Square
3.4.4 Problem Set 3.4
Warm Up
3.4.4.3.
Skills Practice
Applications
3.4.4.21.
3.4.4.23.
3.4.4.25.
3.5 Chapter 3 Summary and Review
3.5.3 Chapter 3 Review Problems
3.5.3.27.
3.5.3.28.
3.5.3.29.
3.5.3.30.
3.5.3.31.
3.5.3.32.
3.5.3.33.
3.5.3.34.
4 Applications of Quadratic Models
4.1 Quadratic Formula
4.1.6 Problem Set 4.1
Warm Up
4.1.6.3.
Skills Practice
4.1.6.11.
4.1.6.13.
4.1.6.15.
Applications
4.1.6.23.
4.1.6.25.
4.1.6.27.
Answer.
b. \(10h(2h-6)=2160~~~\)c. 12 ft by 18 ft by 10ft
Note 4.1.19.
According to the latest research and data, there has been an increase in the number of tigers, and now the total number of wild tigers worldwide is 5,574, according to the World Animal Foundation at https://worldanimalfoundation.org/advocate/animal-captivity-statistics/
4.2 The Vertex
4.2.5 Problem Set 4.2
Warm Up
4.2.5.1.
Answer.
4.2.5.3.
Skills Practice
4.2.5.11.
Applications
4.2.5.17.
4.2.5.19.
4.2.5.21.
4.2.5.23.
4.2.5.25.
4.3 Curve Fitting
4.3.5 Problem Set 4.3
Warm Up
4.3.5.3.
Skills Practice
4.3.5.13.
Applications
4.3.5.15.
4.3.5.17.
4.3.5.19.
4.3.5.21.
4.4 Quadratic Inequalities
4.4.6 Problem Set 4.4
Warm Up
Skills Practice
4.4.6.7.
Applications
4.4.6.27.
4.4.6.33.
4.5 Chapter 4 Summary and Review
4.5.3 Chapter 4 Review Problems
4.5.3.11.
4.5.3.12.
4.5.3.13.
4.5.3.14.
4.5.3.15.
4.5.3.16.
4.5.3.17.
4.5.3.18.
4.5.3.19.
4.5.3.20.
4.5.3.21.
4.5.3.22.
4.5.3.23.
4.5.3.24.
4.5.3.25.
4.5.3.26.
4.5.3.27.
4.5.3.28.
4.5.3.29.
4.5.3.30.
4.5.3.31.
4.5.3.32.
4.5.3.33.
4.5.3.34.
5 Functions and Their Graphs
5.1 Functions
5.1.7 Problem Set 5.1
Warm Up
Skills Practice
5.1.7.9.
Applications
5.1.7.13.
5.1.7.15.
5.1.7.17.
5.1.7.19.
5.1.7.21.
5.1.7.25.
5.2 Graphs of Functions
5.2.6 Problem Set 5.2
Warm Up
5.2.6.5.
Skills Practice
Applications
5.2.6.11.
5.2.6.13.
5.2.6.15.
Answer.
-
\(f(1000) = 1495\text{:}\) The speed of sound at a depth of \(1000\) meters is approximately \(1495\) meters per second.
-
\(d = 570\) or \(d = 1070\text{:}\) The speed of sound is \(1500\) meters per second at both a depth of \(570\) meters and a depth of \(1070\) meters.
-
The slowest speed occurs at a depth of about \(810\) meters and the speed is about \(1487\) meters per second, so \(f(810) = 1487\text{.}\)
-
\(f\) increases from about \(1533\) to \(1541\) in the first \(110\) meters of depth, then drops to about \(1487\) at \(810\) meters, then rises again, passing \(1553\) at a depth of about \(1600\) meters.
5.2.6.17.
5.2.6.19.
5.2.6.21.
5.3 Some Basic Graphs
5.3.4 Problem Set 5.3
Warm Up
5.3.4.1.
Skills Practice
5.3.4.17.
Applications
5.3.4.19.
5.3.4.27.
5.3.4.29.
Answer.
-
horizontal shift of square root \(y=\sqrt{x}\)
-
vertical shift of cube root \(y=\sqrt[3]{x}\)
-
vertical shift of absolute value \(y=\abs{x}\)
-
vertical flip of reciprocal \(y=\dfrac{1}{x}\)
-
vertical flip and vertical shift of cube \(y=x^3\)
-
vertical flip and vertical shift of inverse-square \(y=\dfrac{1}{x^2} \)
5.4 Direct Variation
5.4.6 Problem Set 5.4
Warm Up
5.4.6.1.
Skills Practice
Applications
5.4.6.9.
5.4.6.11.
5.4.6.13.
5.4.6.15.
5.4.6.20.
5.5 Inverse Variation
5.5.4 Problem Set 5.5
Warm Up
Skills Practice
5.5.4.5.
Applications
5.5.4.13.
5.5.4.15.
5.5.4.17.
5.5.4.22.
5.6 Functions as Models
5.6.6 Problem Set 5.6
Warm Up
5.6.6.1.
5.6.6.3.
5.6.6.5.
5.6.6.7.
Skills Practice
Applications
5.6.6.27.
5.6.6.29.
Absolute Value
5.6.6.9.
5.6.6.11.
5.6.6.13.
5.6.6.15.
5.6.6.17.
5.6.6.19.
5.6.6.21.
5.6.6.23.
5.6.6.25.
5.6.6.27.
5.6.6.29.
5.6.6.31.
5.6.6.33.
5.6.6.35.
5.7 Chapter 5 Summary and Review
5.7.3 Chapter 5 Review Problems
5.7.3.5.
5.7.3.6.
5.7.3.11.
5.7.3.12.
5.7.3.13.
5.7.3.14.
5.7.3.23.
5.7.3.24.
5.7.3.25.
5.7.3.26.
5.7.3.31.
5.7.3.32.
5.7.3.33.
5.7.3.34.
5.7.3.35.
5.7.3.45.
5.7.3.46.
5.7.3.47.
5.7.3.48.
5.7.3.49.
5.7.3.50.
6 Powers and Roots
6.1 Integer Exponents
6.1.5 Problem Set 6.1
Warm Up
Skills Practice
6.1.5.7.
6.1.5.9.
6.1.5.11.
6.1.5.29.
Applications
6.1.5.31.
6.1.5.33.
6.1.5.35.
6.1.5.36.
6.2 Roots and Radicals
6.2.9 Problem Set 6.2
Warm Up
6.2.9.1.
6.2.9.3.
Skills Practice
6.2.9.5.
6.2.9.27.
6.2.9.29.
Applications
6.2.9.31.
6.2.9.33.
6.2.9.35.
6.2.9.36.
Answer.
-
\(\displaystyle 1.8\times 10^{14} g/\text{cm}^3\)
-
Element Carbon Potassium Cobalt Technetium Radium Mass
number, \(A\)\(14\) \(40\) \(60\) \(99\) \(226\) Radius, \(r\)
(\(10^{-13}\) cm)\(3.1\) \(4.4\) \(5.1\) \(6\) \(7.9\) -
6.2.9.37.
6.2.9.39.
6.3 Rational Exponents
6.3.7 Problem Set 6.3
Warm Up
6.3.7.1.
6.3.7.3.
Skills Practice
6.3.7.21.
6.3.7.31.
Answer.
\(x\) | \(0\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) |
\(f(x)\) | \(0\) | \(1\) | \(2.5\) | \(4.3\) | \(6.4\) | \(8.5\) | \(10.9\) |
\(g(x)\) | \(0\) | \(1\) | \(2.8\) | \(5.2\) | \(8\) | \(11.2\) | \(14.7\) |
Applications
6.3.7.35.
6.3.7.37.
6.3.7.39.
6.3.7.41.
6.3.7.43.
6.4 Working with Radicals
6.4.6 Problem Set 6.4
Warm Up
6.4.6.5.
Skills Practice
6.4.6.7.
6.4.6.9.
6.4.6.21.
Applications
6.4.6.29.
6.5 Radical Equations
6.5.6 Problem Set 6.5
Warm Up
6.5.6.1.
6.5.6.3.
6.5.6.5.
Skills Practice
Applications
6.5.6.19.
6.5.6.21.
6.6 Chapter 6 Summary and Review
6.6.3 Chapter 6 Review Problems
6.6.3.1.
6.6.3.2.
6.6.3.3.
6.6.3.4.
6.6.3.5.
6.6.3.6.
6.6.3.7.
6.6.3.8.
6.6.3.9.
6.6.3.10.
6.6.3.11.
6.6.3.12.
6.6.3.13.
6.6.3.14.
6.6.3.15.
6.6.3.16.
6.6.3.17.
6.6.3.18.
6.6.3.19.
6.6.3.20.
6.6.3.21.
6.6.3.22.
6.6.3.23.
6.6.3.25.
6.6.3.27.
6.6.3.29.
6.6.3.30.
6.6.3.31.
6.6.3.32.
6.6.3.33.
6.6.3.34.
6.6.3.35.
6.6.3.36.
6.6.3.37.
6.6.3.38.
6.6.3.39.
6.6.3.40.
6.6.3.41.
6.6.3.42.
6.6.3.47.
6.6.3.48.
6.6.3.49.
6.6.3.50.
6.6.3.51.
6.6.3.52.
6.6.3.53.
6.6.3.54.
6.6.3.55.
6.6.3.56.
7 Exponential Functions
7.1 Exponential Growth and Decay
7.1.7 Problem Set 7.1
Warm Up
7.1.7.1.
7.1.7.3.
Skills Practice
7.1.7.11.
7.1.7.13.
7.1.7.15.
7.1.7.19.
7.1.7.20.
7.1.7.21.
7.1.7.22.
Applications
7.1.7.23.
7.1.7.24.
7.1.7.25.
7.1.7.27.
7.1.7.29.
7.1.7.31.
7.1.7.33.
7.1.7.35.
7.1.7.37.
7.2 Exponential Functions
7.2.6 Problem Set 7.2
Warm Up
Skills Practice
7.2.6.17.
7.2.6.18.
7.2.6.19.
Answer.
\(x\) | \(-3\) | \(-2\) | \(-1\) | \(0\) | \(1\) | \(2\) | \(3\) |
\(f(x)=3^x \) | \(\frac{1}{27} \) | \(\frac{1}{9} \) | \(\frac{1}{3} \) | \(1\) | \(3\) | \(9\) | \(27\) |
\(g(x)=\left(\frac{1}{3} \right)^x \) | \(27\) | \(9\) | \(3\) | \(1\) | \(\frac{1}{3} \) | \(\frac{1}{9} \) | \(\frac{1}{27} \) |
7.2.6.21.
7.2.6.25.
Applications
7.2.6.28.
7.2.6.29.
7.2.6.30.
7.2.6.31.
7.2.6.32.
Answer.
\(x\) | \(f(x)=x^2\) | \(g(x)=2^x \) |
\(-2\) | \(4\) | \(\frac{1}{4} \) |
\(-1\) | \(1\) | \(\frac{1}{2} \) |
\(0\) | \(0\) | 1 |
\(1\) | \(1\) | \(2\) |
\(2\) | \(4\) | \(4\) |
\(3\) | \(9\) | \(8\) |
\(4\) | \(16\) | \(16\) |
\(5\) | \(25\) | \(32\) |
-
\(\displaystyle Three\)
-
\(\displaystyle x = -0.77,~2,~4\)
-
\(\displaystyle (-0.77, 2) \cup (4,\infty)\)
-
\(\displaystyle g(x)\)
7.3 Logarithms
7.3.7 Problem Set 7.3
Warm Up
7.3.7.1.
Skills Practice
7.3.7.21.
Applications
7.3.7.25.
7.3.7.29.
7.4 Properties of Logarithms
7.4.5 Problem Set 7.4
Warm Up
7.4.5.1.
7.4.5.9.
7.4.5.11.
Skills Practice
7.4.5.13.
7.4.5.15.
Applications
7.4.5.37.
7.4.5.39.
7.4.5.41.
7.5 Exponential Models
7.5.5 Problem Set 7.5
Warm Up
Skills Practice
Applications
7.5.5.19.
7.5.5.21.
7.5.5.23.
7.6 Chapter 7 Summary and Review
7.6.3 Chapter 7 Review Problems
7.6.3.47.
7.6.3.49.
7.6.3.51.
8 Polynomial and Rational Functions
8.1 Polynomial Functions
8.1.10 Problem Set 8.1
Warm Up
8.1.10.1.
8.1.10.3.
Skills Practice
8.1.10.5.
8.1.10.7.
8.1.10.9.
Applications
8.1.10.23.
8.1.10.25.
8.1.10.27.
8.1.10.29.
8.1.10.31.
8.2 Algebraic Fractions
8.2.5 Problem Set 8.2
Warm Up
Skills Practice
8.2.5.9.
Applications
8.2.5.29.
8.2.5.31.
Answer.
-
\(\displaystyle 0\le p \lt 100\)
-
\(p\) \(0\) \(25\) \(50\) \(75\) \(90\) \(100\) \(C\) \(0\) \(120\) \(360\) \(1080\) \(3240\) \(-- \) -
60%
-
\(\displaystyle p\lt 80\%\)
-
\(p=100\text{:}\) The cost of extracting more ore grows without bound as the amount extracted approaches 100%.
8.2.5.33.
8.2.5.35.
8.3 Operations on Algebraic Fractions
8.3.9 Problem Set 8.3
Warm Up
8.3.9.1.
8.3.9.3.
8.3.9.5.
Skills Practice
8.3.9.7.
8.3.9.29.
8.3.9.31.
8.3.9.33.
8.3.9.35.
8.3.9.37.
8.3.9.39.
8.3.9.41.
Applications
8.4 More Operations on Fractions
8.4.5 Problem Set 8.4
Warm Up
Skills Practice
Applications
8.4.5.25.
8.4.5.27.
8.5 Equations with Fractions
8.5.8 Problem Set 8.5
Warm Up
Skills Practice
8.5.8.17.
Applications
8.5.8.25.
8.5.8.27.
8.5.8.29.
8.5.8.31.
8.5.8.33.
8.5.8.35.
8.5.8.37.
8.5.8.39.
8.6 Chapter 8 Summary and Review
8.6.3 Chapter 8 Review Problems
8.6.3.5.
8.6.3.7.
8.6.3.9.
8.6.3.11.
9 Equations and Graphs
9.1 Properties of Lines
9.1.4 Problem Set 9.1
Warm Up
9.1.4.1.
9.1.4.3.
Answer.
Number | Negative reciprocal |
Their product |
\(\dfrac{2}{3} \) | \(\dfrac{-3}{2} \) | \(-1 \) |
\(\dfrac{-5}{2} \) | \(\dfrac{2}{5}\) | \(-1\) |
\(6 \) | \(\dfrac{-1}{6} \) | \(-1\) |
\(-4\) | \(\dfrac{1}{4} \) | \(-1\) |
\(-1 \) | \(1\) | \(-1\) |
Skills Practice
9.1.4.11.
9.1.4.13.
Applications
9.1.4.15.
9.1.4.17.
9.1.4.19.
9.1.4.21.
9.2 The Distance and Midpoint Formulas
9.2.7 Problem Set 9.2
Warm Up
9.2.7.1.
9.2.7.3.
Answer.
\(x\) | \(-4\) | \(-3\) | \(-2\) | \(-1\) | \(0\) | \(1\) | \(2\) | \(3\) | \(4\) |
\(y\) | \(0\) | \(\pm\sqrt{7}\) | \(\pm\sqrt{12}\) | \(\pm\sqrt{15}\) | \(\pm 4\) | \(\pm\sqrt{15}\) | \(\pm\sqrt{12}\) | \(\pm\sqrt{7}\) | \(0\) |
Skills Practice
Applications
9.2.7.15.
9.2.7.17.
9.2.7.19.
9.2.7.21.
9.3 Conic Sections: Ellipses
9.3.5 Problem Set 9.3
Warm Up
9.3.5.1.
9.3.5.3.
9.3.5.5.
Skills Practice
Applications
9.3.5.29.
9.3.5.31.
9.4 Conic Sections: Hyperbolas
9.4.6 Problem Set 9.4
Skills Practice
9.4.6.11.
9.4.6.13.
9.4.6.15.
9.4.6.17.
9.4.6.23.
9.4.6.25.
9.4.6.27.
Applications
9.5 Nonlinear Systems
9.5.4 Problem Set 9.5
Warm Up
9.5.4.1.
9.5.4.3.
Skills Practice
9.5.4.11.
9.5.4.13.
9.5.4.15.
9.5.4.17.
9.5.4.19.
Applications
9.6 Chapter 9 Summary and Review
9.6.3 Chapter 9 Review Problems
9.6.3.3.
9.6.3.4.
9.6.3.5.
9.6.3.6.
9.6.3.7.
9.6.3.8.
9.6.3.19.
9.6.3.20.
9.6.3.21.
9.6.3.22.
9.6.3.23.
9.6.3.24.
9.6.3.25.
9.6.3.26.
9.6.3.27.
9.6.3.28.
9.6.3.29.
9.6.3.30.
9.6.3.31.
9.6.3.32.
9.6.3.33.
9.6.3.34.
9.6.3.35.
9.6.3.36.
9.6.3.37.
9.6.3.38.
9.6.3.39.
9.6.3.40.
9.6.3.41.
9.6.3.42.
10 Logarithmic Functions
10.1 Logarithmic Functions
10.1.7 Problem Set 10.1
Warm Up
Skills Practice
10.1.7.9.
Answer.
10.1.7.19.
10.1.7.21.
10.1.7.23.
Applications
10.1.7.29.
Answer.
-
-
The graph resembles a logarithmic function. The function is close to the points but appears too steep at first and not steep enough after \(n = 15\text{.}\) Overall, it is a good fit.
-
\(f\) grows (more and more slowly) without bound. \(f\) will eventually exceed \(100\) per cent, but no one can forget more than 100% of what is learned.
10.1.7.31.
10.2 Logarithmic Scales
10.2.7 Problem Set 10.2
Warm Up
Skills Practice
10.2.7.5.
10.2.7.7.
Answer.
10.2.7.9.
Applications
10.2.7.19.
10.2.7.21.
10.2.7.23.
Answer.
10.2.7.25.
10.2.7.27.
10.2.7.29.
10.2.7.32.
10.2.7.33.
10.3 The Natural Base
10.3.7 Homework 10.3
Skills Practice
10.3.7.1.
Answer.
\(x\) | \(-10\) | \(-5\) | \(0\) | \(5\) | \(10\) | \(15\) | \(20\) |
\(f(x)\) | \(0.135\) | \(0.368\) | \(1\) | \(2.718\) | \(7.389\) | \(20.086\) | \(54.598\) |
10.3.7.3.
Answer.
\(x\) | \(-10\) | \(-5\) | \(0\) | \(5\) | \(10\) | \(15\) | \(20\) |
\(f(x)\) | \(20.086\) | \(4.482\) | \(1\) | \(0.223\) | \(0.05\) | \(0.011\) | \(0.00248\) |
10.3.7.15.
Answer.
-
\(x\) \(0\) \(0.5\) \(1\) \(1.5\) \(2\) \(2.5\) \(e^x\) \(1 \) \(1.6487\) \(2.7183\) \(4.4817\) \(7.3891\) \(12.1825\) -
Each ratio is \(e^{0.5} \approx 1.6487\text{:}\) Increasing \(x\)-values by a constant \(\Delta x = 0.5\) corresponds to multiplying the \(y\)-values of the exponential function by a constant factor of \(e^{\Delta x}\text{.}\)
10.3.7.17.
Answer.
-
\(x\) \(0\) \(0.6931\) \(1.3863\) \(2.0794\) \(2.7726\) \(3.4657\) \(4.1589\) \(e^x\) \(1 \) \(2\) \(4\) \(8\) \(16\) \(32\) \(64\) -
Each difference in \(x\)-values is approximately \(\ln 2\approx 0.6931\text{:}\) Increasing \(x\)-values by a constant \(\Delta x = \ln 2\) corresponds to multiplying the \(y\)-values of the exponential function by a constant factor of \(e^{\Delta x} = e^{\ln 2} = 2\text{.}\) That is, each function value is approximately equal to double the previous one.
10.3.7.33.
Answer.
-
\(n\) \(0.39\) \(3.9\) \(39\) \(390\) \(\ln {(n)}\) \(-0.942 \) \(1.361 \) \(3.664 \) \(5.966 \) -
Each difference in function values is approximately \(\ln 10\approx 2.303\text{:}\) Multiplying \(x\)-values by a constant factor of 10 corresponds to adding a constant value of \(\ln 10\) to the \(y\)-values of the natural log function.