Checkpoint 10.3.1. Practice 1.
Use your calculator to evaluate the following powers. Round to four decimal places.
-
\(\displaystyle e^2\)
-
\(\displaystyle e^{3.5}\)
-
\(\displaystyle e^{-0.5}\)
| \(x\) | \(y=2^x\) | \(y=e^x\) | \(y=3^x\) |
| \(-3\) | \(0.125\) | \(0.050\) | \(0.037\) |
| \(-2\) | \(0.250\) | \(0.135\) | \(0.111\) |
| \(-1\) | \(0.500\) | \(0.368\) | \(0.333\) |
| \(0\) | \(1\) | \(1\) | \(1\) |
| \(1\) | \(2\) | \(2.718\) | \(3\) |
| \(2\) | \(4\) | \(7.389\) | \(9\) |
| \(3\) | \(8\) | \(20.086\) | \(27\) |


| \(x\) | \(y=\ln {(x)}\) |
| \(0.050\) | \(-3\) |
| \(0.135\) | \(-2\) |
| \(0.368\) | \(-1\) |
| \(1\) | \(0\) |
| \(2.718\) | \(1\) |
| \(7.389\) | \(2\) |
| \(20.086\) | \(3\) |
| \(t\) | \(0\) | \(10\) | \(20\) | \(30\) | \(40\) | \(50\) | \(60\) |
| \(N(t)\) | \(\hphantom{000}\) | \(\hphantom{000}\) | \(\hphantom{000}\) | \(\hphantom{000}\) | \(\hphantom{000}\) | \(\hphantom{000}\) | \(\hphantom{000}\) |
| \(~~t~~\) | \(A(t)\) |
| \(0\) | \(500\) |
| \(1\) | \(541.64\) |
| \(2\) | \(586.76\) |
| \(3\) | \(635.62\) |
| \(4\) | \(688.56\) |
| \(5\) | \(745.91\) |
| \(n\) | \(~~~A~~~\) |
| \(1\) (annually) | \(1080\) |
| \(2\) (semiannually) | \(\) |
| \(4\) (quarterly) | \(\) |
| \(6\) (bimonthly) | \(\) |
| \(12\) (monthly) | \(\) |
| \(365\) (daily) | \(\) |
| \(1000\) | \(\) |
| \(10,000\) | \(\) |
| \(r=0.15\) | |
| \(n\) | \(A\) |
| \(1\) | \(115\) |
| \(2\) | \(\hphantom{00000}\) |
| \(4\) | \(\) |
| \(6\) | \(\) |
| \(12\) | \(\) |
| \(3652\) | \(\) |
| \(1000\) | \(\) |
| \(10,000\) | \(\) |
| \(~~1000e^{0.15}= \) | |
| \(r=1\) | |
| \(n\) | \(A\) |
| \(1\) | \(200\) |
| \(2\) | \(\hphantom{00000}\) |
| \(4\) | \(\) |
| \(6\) | \(\) |
| \(12\) | \(\) |
| \(3652\) | \(\) |
| \(1000\) | \(\) |
| \(10,000\) | \(\) |
| \(~~1000e^{1}= \) | |
| \(n\) | \(100\) | \(1000\) | \(10,000\) | \(100,000\) |
| \(\left(1+\dfrac{1}{n} \right)^n \) |
| \(x\) | \(-10\) | \(-5\) | \(0\) | \(5\) | \(10\) | \(15\) | \(20\) |
| \(f(x)\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) | \(\hphantom{0000}\) |
| \(x\) | \(0\) | \(0.5\) | \(1\) | \(1.5\) | \(2\) | \(2.5\) |
| \(e^x\) | \(\phantom{000} \) | \(\phantom{000}\) | \(\phantom{000}\) | \(\phantom{000}\) | \(\phantom{000}\) | \(\phantom{000}\) |
| \(x\) | \(0\) | \(2\) | \(4\) | \(6\) | \(8\) | \(10\) |
| \(e^x\) | \(\phantom{000} \) | \(\phantom{000}\) | \(\phantom{000}\) | \(\phantom{000}\) | \(\phantom{000}\) | \(\phantom{000}\) |
| \(x\) | \(0\) | \(0.6931\) | \(1.3863\) | \(2.0794\) | \(2.7726\) | \(3.4657\) | \(4.1589\) |
| \(e^x\) | \(\phantom{000} \) | \(\phantom{000}\) | \(\phantom{000}\) | \(\phantom{000}\) | \(\phantom{000}\) | \(\phantom{000}\) | \(\phantom{000}\) |
| \(x\) | \(0\) | \(1.0986\) | \(2.1972\) | \(3.2958\) | \(4.3944\) | \(5.4931\) | \(6.5917\) |
| \(e^x\) | \(\phantom{000} \) | \(\phantom{000}\) | \(\phantom{000}\) | \(\phantom{000}\) | \(\phantom{000}\) | \(\phantom{000}\) | \(\phantom{000}\) |
| \(n\) | \(0.39\) | \(3.9\) | \(39\) | \(390\) |
| \(\ln {(n)}\) | \(\hphantom{0000} \) | \(\hphantom{0000} \) | \(\hphantom{0000} \) | \(\hphantom{0000} \) |
| \(n\) | \(0.64\) | \(6.4\) | \(64\) | \(640\) |
| \(\ln n\) | \(\hphantom{0000} \) | \(\hphantom{0000} \) | \(\hphantom{0000} \) | \(\hphantom{0000} \) |
| \(n\) | \(2\) | \(4\) | \(8\) | \(16\) |
| \(\ln {(n)}\) | \(\hphantom{0000} \) | \(\hphantom{0000} \) | \(\hphantom{0000} \) | \(\hphantom{0000} \) |
| \(n\) | \(5\) | \(25\) | \(125\) | \(625\) |
| \(\ln {(n)}\) | \(\hphantom{0000} \) | \(\hphantom{0000} \) | \(\hphantom{0000} \) | \(\hphantom{0000} \) |
| Time (min) | \(0\) | \(10\) | \(20\) | \(30\) | \(40\) | \(50\) | \(60\) | \(70\) | \(80\) | \(90\) |
| Counts/sec | \(120\) | \(90\) | \(69\) | \(54\) | \(42\) | \(33\) | \(25\) | \(19\) | \(15\) | \(13\) |
| Time (min) | \(0\) | \(10\) | \(20\) | \(30\) | \(40\) | \(50\) | \(60\) | \(70\) | \(80\) | \(90\) |
| Counts/sec | \(180\) | \(112\) | \(71\) | \(45\) | \(28\) | \(18\) | \(11\) | \(7\) | \(4\) | \(3\) |