Example 2.32.
How many different rearrangements of the string:
\begin{equation*}
\text{MITCHELTKELLERANDWILLIAMTTROTTERAREGENIUSES!!}
\end{equation*}
are possible if all letters and characters must be used?
Solution.
To answer this question, we note that there are a total of \(45\) characters distributed as follows: 3 A’s, 1 C, 1 D, 7 E’s, 1 G, 1 H, 4 I’s, 1 K, 5 L’s, 2 M’s, 2 N’s, 1 O, 4 R’s, 2 S’s, 6 T’s, 1 U, 1 W, and 2 !’s. So the number of rearrangements is
\begin{equation*}
\frac{45!}{3!1!1!7!1!1!4!1!5!2!2!1!4!2!6!1!1!2!}.
\end{equation*}

