Let \((a,b), (c,d), (e,f)\in Z\text{.}\) Suppose that
\begin{equation*}
(a,b)\cong(c,d)\quad\text{and} \quad (c,d)\cong (e,f).
\end{equation*}
Then \(a+d=b+c\) and \(c+f=d+e\text{.}\) Therefore,
\begin{equation*}
(a+d)+(c+f) =(b+c)+(d+e).
\end{equation*}
It follows that
\begin{equation*}
(a+f)+(c+d) =(b+e)+(c+d).
\end{equation*}
Thus \(a+f = b+e\) so that \((a,b)\cong(e,f)\text{.}\)