The generating function \(D(x)\) for the number of partitions of \(n\) into distinct parts is
\begin{equation*}
D(x)=\prod_{n=1}^\infty (1+x^n).
\end{equation*}
On the other hand, the generating function \(O(x)\) for the number of partitions of \(n\) into odd parts is
\begin{equation*}
O(x)=\prod_{n=1}^\infty\frac{1}{1-x^{2n-1}}.
\end{equation*}
To see that \(D(x)=O(x)\text{,}\) we note that \(1-x^{2n}=(1-x^n)(1+x^n)\) for all \(n\ge1\text{.}\) Therefore,
\begin{align*}
D(x)\amp =\prod_{n=1}^\infty
(1+x^n)=\prod_{n=1}^\infty\frac{1-x^{2n}}{1-x^n} =\frac{\prod_{n=1}^\infty(1-x^{2n})}{\prod_{n=1}^\infty(1-x^n)}\\
\amp =\frac{\prod_{n=1}^\infty(1-x^{2n})}{
\prod_{n=1}^\infty(1-x^{2n-1})\prod_{n=1}^\infty(1-x^{2n})}
=\prod_{n=1}^\infty\frac{1}{1-x^{2n-1}}\\
\amp = O(x).
\end{align*}