Skip to main content

Section 4.3 Git Basics

If you could read only one section to get going with Git, this would be the one to read. This section covers every basic command you need to do the vast majority of the things you’ll eventually spend your time doing with Git. By the end of this section, you should be able to configure and initialize a repository, begin and stop tracking files, and stage and commit changes. You will also learn how to set up Git to ignore certain files and file patterns, how to undo mistakes quickly and easily, how to browse the history of your project and view changes between commits, and how to push and pull from remote repositories.

Subsection 4.3.1 Getting a Git Repository

You typically obtain an existing Git repository in one of two ways:
  1. You can take an existing local directory that is currently not under version control, and turn it into a Git repository, or
  2. You can clone an existing Git repository from elsewhere.
In either case, you end up with a Git repository on your local machine, ready for work.

Initializing a Repository in an Existing Directory.

If you have a project directory that is currently not under version control and you want to start controlling it with Git, you first need to go to that project’s directory. If you’ve never done this, it looks a little different depending on which system you’re running:
for Linux:
$ cd /home/user/my_project
for macOS:
$ cd /Users/user/my_project
for Windows:
$ cd C:/Users/user/my_project
and type:
$ git init
This creates a new subdirectory named .git that contains all of your necessary repository files — a Git repository skeleton. At this point, nothing in your project is tracked yet.
If you want to start version-controlling existing files (as opposed to an empty directory), you should probably begin tracking those files and do an initial commit. You can accomplish that with a few git add commands that specify the files you want to track, followed by a git commit:
$ git add *.c
$ git add LICENSE
$ git commit -m 'Initial project version'
We’ll go over what these commands do in just a minute. At this point, you have a Git repository with tracked files and an initial commit.

Cloning an Existing Repository.

If you want to get a copy of an existing Git repository — for example, a project you’d like to contribute to — the command you need is git clone. If you’re familiar with other VCSs such as Subversion, you’ll notice that the command is "clone" and not "checkout". This is an important distinction — instead of getting just a working copy, Git receives a full copy of nearly all data that the server has. Every version of every file for the history of the project is pulled down by default when you run git clone.
You clone a repository with git clone <url>. For example, if you want to clone the Git linkable library called libgit2, you can do so like this:
$ git clone https://github.com/libgit2/libgit2
That creates a directory named libgit2, initializes a .git directory inside it, pulls down all the data for that repository, and checks out a working copy of the latest version. If you go into the new libgit2 directory that was just created, you’ll see the project files in there, ready to be worked on or used.
If you want to clone the repository into a directory named something other than libgit2, you can specify the new directory name as an additional argument:
$ git clone https://github.com/libgit2/libgit2 mylibgit
That command does the same thing as the previous one, but the target directory is called mylibgit.
Git has a number of different transfer protocols you can use. The previous example uses the https:// protocol, but you may also see git:// or user@server:path/to/repo.git, which uses the SSH transfer protocol.

Subsection 4.3.2 Recording Changes to the Repository

At this point, you should have a bona fide Git repository on your local machine, and a checkout or working copy of all of its files in front of you. Typically, you’ll want to start making changes and committing snapshots of those changes into your repository each time the project reaches a state you want to record.
Remember that each file in your working directory can be in one of two states: tracked or untracked. Tracked files are files that were in the last snapshot, as well as any newly staged files; they can be unmodified, modified, or staged. In short, tracked files are files that Git knows about.
Untracked files are everything else — any files in your working directory that were not in your last snapshot and are not in your staging area. When you first clone a repository, all of your files will be tracked and unmodified because Git just checked them out and you haven’t edited anything.
As you edit files, Git sees them as modified, because you’ve changed them since your last commit. As you work, you selectively stage these modified files and then commit all those staged changes, and the cycle repeats.
An image using arrows to describe different changes to the status of your files during their lifecycle when working with git.
Figure 4.3.1. The lifecycle of the status of your files

Checking the Status of Your Files.

The main tool you use to determine which files are in which state is the git status command. If you run this command directly after a clone, you should see something like this:
$ git status
On branch main
Your branch is up-to-date with 'origin/main'.
nothing to commit, working tree clean
This means you have a clean working directory; in other words, none of your tracked files are modified. Git also doesn’t see any untracked files, or they would be listed here. Finally, the command tells you which branch you’re on and informs you that it has not diverged from the same branch on the server. That branch is typically main, which is the current default. It could also be main, which was the default until October 1, 2020. Don’t worry about it here. The next section on Git Branching will go over branches and references in detail.
Let’s say you add a new file to your project, a simple README file. If the file didn’t exist before, and you run git status, you see your untracked file like so:
$ echo 'My Project' > README
$ git status
On branch main
Your branch is up-to-date with 'origin/main'.
Untracked files:
  (use "git add <file>..." to include in what will be committed)

    README

nothing added to commit but untracked files present (use "git add" to track)
You can see that your new README file is untracked, because it’s under the “Untracked files” heading in your status output. Untracked basically means that Git sees a file you didn’t have in the previous snapshot (commit), and which hasn’t yet been staged; Git won’t start including it in your commit snapshots until you explicitly tell it to do so. It does this so you don’t accidentally begin including generated binary files or other files that you did not mean to include. You do want to start including README, so let’s start tracking the file.

Tracking New Files.

In order to begin tracking a new file, you use the command git add. To begin tracking the README file, you can run this:
$ git add README
If you run your status command again, you can see that your README file is now tracked and staged to be committed:
$ git status
On branch main
Your branch is up-to-date with 'origin/main'.
Changes to be committed:
  (use "git restore --staged <file>..." to unstage)

    new file:   README
You can tell that it’s staged because it’s under the “Changes to be committed” heading. If you commit at this point, the version of the file at the time you ran git add is what will be in the subsequent historical snapshot. You may recall that when you ran git init earlier, you then ran git add <files> — that was to begin tracking files in your directory. The git add command takes a path name for either a file or a directory; if it’s a directory, the command adds all the files in that directory recursively.

Staging Modified Files.

Let’s change a file that was already tracked. If you change a previously tracked file called CONTRIBUTING.md and then run your git status command again, you get something that looks like this:
$ git status
On branch main
Your branch is up-to-date with 'origin/main'.
Changes to be committed:
  (use "git reset HEAD <file>..." to unstage)

    new file:   README

Changes not staged for commit:
  (use "git add <file>..." to update what will be committed)
  (use "git checkout -- <file>..." to discard changes in working directory)

    modified:   CONTRIBUTING.md
The CONTRIBUTING.md file appears under a section named “Changes not staged for commit” — which means that a file that is tracked has been modified in the working directory but not yet staged. To stage it, you run the git add command. git add is a multipurpose command — you use it to begin tracking new files, to stage files, and to do other things like marking merge-conflicted files as resolved. It may be helpful to think of it more as “add precisely this content to the next commit” rather than “add this file to the project”. Let’s run git add now to stage the CONTRIBUTING.md file, and then run git status again:
$ git add CONTRIBUTING.md
$ git status
On branch main
Your branch is up-to-date with 'origin/main'.
Changes to be committed:
  (use "git reset HEAD <file>..." to unstage)

    new file:   README
    modified:   CONTRIBUTING.md
Both files are staged and will go into your next commit. At this point, suppose you remember one little change that you want to make in CONTRIBUTING.md before you commit it. You open it again and make that change, and you’re ready to commit. However, let’s run git status one more time:
$ git status
On branch main
Your branch is up-to-date with 'origin/main'.
Changes to be committed:
  (use "git reset HEAD <file>..." to unstage)

    new file:   README
    modified:   CONTRIBUTING.md

Changes not staged for commit:
  (use "git add <file>..." to update what will be committed)
  (use "git checkout -- <file>..." to discard changes in working directory)

    modified:   CONTRIBUTING.md
What the heck? Now CONTRIBUTING.md is listed as both staged and unstaged. How is that possible? It turns out that Git stages a file exactly as it is when you run the git add command. If you commit now, the version of CONTRIBUTING.md as it was when you last ran the git add command is how it will go into the commit, not the version of the file as it looks in your working directory when you run git commit. If you modify a file after you run git add, you have to run git add again to stage the latest version of the file:
$ git add CONTRIBUTING.md
$ git status
On branch main
Your branch is up-to-date with 'origin/main'.
Changes to be committed:
  (use "git reset HEAD <file>..." to unstage)

    new file:   README
    modified:   CONTRIBUTING.md

Short Status.

While the git status output is pretty comprehensive, it’s also quite wordy. Git also has a short status flag so you can see your changes in a more compact way. If you run git status -s or git status --short you get a far more simplified output from the command:
$ git status -s
 M README
MM Rakefile
A  lib/git.rb
M  lib/simplegit.rb
?? LICENSE.txt
New files that aren’t tracked have a ?? next to them, new files that have been added to the staging area have an A, modified files have an M and so on. There are two columns to the output — the left-hand column indicates the status of the staging area and the right-hand column indicates the status of the working tree. So for example in that output, the README file is modified in the working directory but not yet staged, while the lib/simplegit.rb file is modified and staged. The Rakefile was modified, staged and then modified again, so there are changes to it that are both staged and unstaged.

Ignoring Files.

Often, you’ll have a class of files that you don’t want Git to automatically add or even show you as being untracked. These are generally automatically generated files such as log files or files produced by your build system. In such cases, you can create a file listing patterns to match them named .gitignore. Here is an example .gitignore file:
$ cat .gitignore
*.[oa]
*~
The first line tells Git to ignore any files ending in “.o” or “.a” — object and archive files that may be the product of building your code. The second line tells Git to ignore all files whose names end with a tilde (~), which is used by some text editors to mark temporary files. You may also include a log, tmp, or pid directory; automatically generated documentation; and so on. Setting up a .gitignore file for your new repository before you get going is generally a good idea so you don’t accidentally commit files that you really don’t want in your Git repository.
The rules for the patterns you can put in the .gitignore file are as follows:
  • Blank lines or lines starting with # are ignored.
  • Standard glob patterns work, and will be applied recursively throughout the entire working tree.
  • You can start patterns with a forward slash (/) to avoid recursivity.
  • You can end patterns with a forward slash (/) to specify a directory.
  • You can negate a pattern by starting it with an exclamation point (!).
Glob patterns are like simplified regular expressions that shells use. An asterisk (*) matches zero or more characters; [abc] matches any character inside the brackets (in this case a, b, or c); a question mark (?) matches a single character; and brackets enclosing characters separated by a hyphen ([0-9]) matches any character between them (in this case 0 through 9). You can also use two asterisks to match nested directories; a/**/z would match a/z, a/b/z, a/b/c/z, and so on.
Here is another example .gitignore file:
# ignore all .a files
*.a

# but do track lib.a, even though you're ignoring .a files above
!lib.a

# only ignore the TODO file in the current directory, not subdir/TODO
/TODO

# ignore all files in any directory named build
build/

# ignore doc/notes.txt, but not doc/server/arch.txt
doc/*.txt

# ignore all .pdf files in the doc/ directory and any of its subdirectories
doc/**/*.pdf
Hint.
Tip: GitHub maintains a fairly comprehensive list of good .gitignore file examples for dozens of projects and languages at https://github.com/github/gitignore
 1 
github.com/github/gitignore
if you want a starting point for your project.
Note: In the simple case, a repository might have a single .gitignore file in its root directory, which applies recursively to the entire repository. However, it is also possible to have additional .gitignore files in subdirectories. The rules in these nested .gitignore files apply only to the files under the directory where they are located. The Linux kernel source repository has 206 .gitignore files.
It is beyond the scope of this book to get into the details of multiple .gitignore files; see man gitignore for the details.

Viewing Your Staged and Unstaged Changes.

If the git status command is too vague for you — you want to know exactly what you changed, not just which files were changed — you can use the git diff command. We’ll cover git diff in more detail later, but you’ll probably use it most often to answer these two questions: What have you changed but not yet staged? And what have you staged that you are about to commit? Although git status answers those questions very generally by listing the file names, git diff shows you the exact lines added and removed — the patch, as it were.
Let’s say you edit and stage the README file again and then edit the CONTRIBUTING.md file without staging it. If you run your git status command, you once again see something like this:
$ git status
On branch main
Your branch is up-to-date with 'origin/main'.
Changes to be committed:
  (use "git reset HEAD <file>..." to unstage)

    modified:   README

Changes not staged for commit:
  (use "git add <file>..." to update what will be committed)
  (use "git checkout -- <file>..." to discard changes in working directory)

    modified:   CONTRIBUTING.md
To see what you’ve changed but not yet staged, type git diff with no other arguments:
$ git diff
diff --git a/CONTRIBUTING.md b/CONTRIBUTING.md
index 8ebb991..643e24f 100644
--- a/CONTRIBUTING.md
+++ b/CONTRIBUTING.md
@@ -65,7 +65,8 @@ branch directly, things can get messy.
 Please include a nice description of your changes when you submit your PR;
 if we have to read the whole diff to figure out why you're contributing
 in the first place, you're less likely to get feedback and have your change
-merged in.
+merged in. Also, split your changes into comprehensive chunks if your patch is
+longer than a dozen lines.

 If you are starting to work on a particular area, feel free to submit a PR
 that highlights your work in progress (and note in the PR title that it's
That command compares what is in your working directory with what is in your staging area. The result tells you the changes you’ve made that you haven’t yet staged.
If you want to see what you’ve staged that will go into your next commit, you can use git diff --staged. This command compares your staged changes to your last commit:
$ git diff --staged
diff --git a/README b/README
new file mode 100644
index 0000000..03902a1
--- /dev/null
+++ b/README
@@ -0,0 +1 @@
+My Project
It’s important to note that git diff by itself doesn’t show all changes made since your last commit — only changes that are still unstaged. If you’ve staged all of your changes, git diff will give you no output.
For another example, if you stage the CONTRIBUTING.md file and then edit it, you can use git diff to see the changes in the file that are staged and the changes that are unstaged. If our environment looks like this:
$ git add CONTRIBUTING.md
$ echo '# test line' >> CONTRIBUTING.md
$ git status
On branch main
Your branch is up-to-date with 'origin/main'.
Changes to be committed:
  (use "git reset HEAD <file>..." to unstage)

    modified:   CONTRIBUTING.md

Changes not staged for commit:
  (use "git add <file>..." to update what will be committed)
  (use "git checkout -- <file>..." to discard changes in working directory)

    modified:   CONTRIBUTING.md
Now you can use git diff to see what is still unstaged:
$ git diff
diff --git a/CONTRIBUTING.md b/CONTRIBUTING.md
index 643e24f..87f08c8 100644
--- a/CONTRIBUTING.md
+++ b/CONTRIBUTING.md
@@ -119,3 +119,4 @@ at the
 ## Starter Projects

 See our [projects list](https://github.com/libgit2/libgit2/blob/development/PROJECTS.md).
+# test line
and git diff --cached to see what you’ve staged so far (--staged and --cached are synonyms):
$ git diff --cached
diff --git a/CONTRIBUTING.md b/CONTRIBUTING.md
index 8ebb991..643e24f 100644
--- a/CONTRIBUTING.md
+++ b/CONTRIBUTING.md
@@ -65,7 +65,8 @@ branch directly, things can get messy.
 Please include a nice description of your changes when you submit your PR;
 if we have to read the whole diff to figure out why you're contributing
 in the first place, you're less likely to get feedback and have your change
-merged in.
+merged in. Also, split your changes into comprehensive chunks if your patch is
+longer than a dozen lines.

 If you are starting to work on a particular area, feel free to submit a PR
 that highlights your work in progress (and note in the PR title that it is so.

Committing Your Changes.

Now that your staging area is set up the way you want it, you can commit your changes. Remember that anything that is still unstaged — any files you have created or modified that you haven’t run git add on since you edited them — won’t go into this commit. They will stay as modified files on your disk. In this case, let’s say that the last time you ran git status, you saw that everything was staged, so you’re ready to commit your changes. The simplest way to commit is to type git commit:
$ git commit
Doing so launches your editor of choice.
Note: This is set by your shell’s EDITOR environment variable, although you can configure it with whatever you want using the git config - -global core.editor command as you saw in the previous section.
The editor displays the following text:
# Please enter the commit message for your changes. Lines starting
# with '#' will be ignored, and an empty message aborts the commit.
# On branch main
# Your branch is up-to-date with 'origin/main'.
#
# Changes to be committed:
#   new file:   README
#   modified:   CONTRIBUTING.md
#
~
~
~
".git/COMMIT_EDITMSG" 9L, 283C
You can see that the default commit message contains the latest output of the git status command commented out and one empty line on top. You can remove these comments and type your commit message, or you can leave them there to help you remember what you’re committing.
Note: For an even more explicit reminder of what you’ve modified, you can pass the -v option to git commit. Doing so also puts the diff of your change in the editor so you can see exactly what changes you’re committing.
When you exit the editor, Git creates your commit with that commit message (with the comments and diff stripped out).
Alternatively, you can type your commit message inline with the commit command by specifying it after a -m flag, like this:
$ git commit -m "Story 182: fix benchmarks for speed"
[main 463dc4f] Story 182: fix benchmarks for speed
 2 files changed, 2 insertions(+)
 create mode 100644 README
Now you’ve created your first commit! You can see that the commit has given you some output about itself: which branch you committed to (main), what SHA-1 checksum the commit has (463dc4f), how many files were changed, and statistics about lines added and removed in the commit.
Remember that the commit records the snapshot you set up in your staging area. Anything you didn’t stage is still sitting there modified; you can do another commit to add it to your history. Every time you perform a commit, you’re recording a snapshot of your project that you can revert to or compare to later.

Skipping the Staging Area.

Although it can be amazingly useful for crafting commits exactly how you want them, the staging area is sometimes a bit more complex than you need in your workflow. If you want to skip the staging area, Git provides a simple shortcut. Adding the -a option to the git commit command makes Git automatically stage every file that is already tracked before doing the commit, letting you skip the git add part:
$ git status
On branch main
Your branch is up-to-date with 'origin/main'.
Changes not staged for commit:
  (use "git add <file>..." to update what will be committed)
  (use "git checkout -- <file>..." to discard changes in working directory)

    modified:   CONTRIBUTING.md

no changes added to commit (use "git add" and/or "git commit -a")
$ git commit -a -m 'Add new benchmarks'
[main 83e38c7] Add new benchmarks
 1 file changed, 5 insertions(+), 0 deletions(-)
Notice how you don’t have to run git add on the CONTRIBUTING.md file in this case before you commit. That’s because the -a flag includes all changed files. This is convenient, but be careful; sometimes this flag will cause you to include unwanted changes.

Removing Files.

To remove a file from Git, you have to remove it from your tracked files (more accurately, remove it from your staging area) and then commit. The git rm command does that, and also removes the file from your working directory so you don’t see it as an untracked file the next time around.
If you simply remove the file from your working directory, it shows up under the “Changes not staged for commit” (that is, unstaged) area of your git status output:
$ rm PROJECTS.md
$ git status
On branch main
Your branch is up-to-date with 'origin/main'.
Changes not staged for commit:
  (use "git add/rm <file>..." to update what will be committed)
  (use "git checkout -- <file>..." to discard changes in working directory)

        deleted:    PROJECTS.md

no changes added to commit (use "git add" and/or "git commit -a")
Then, if you run git rm, it stages the file’s removal:
$ git rm PROJECTS.md
rm 'PROJECTS.md'
$ git status
On branch main
Your branch is up-to-date with 'origin/main'.
Changes to be committed:
  (use "git reset HEAD <file>..." to unstage)

    deleted:    PROJECTS.md
The next time you commit, the file will be gone and no longer tracked. If you modified the file or had already added it to the staging area, you must force the removal with the -f option. This is a safety feature to prevent accidental removal of data that hasn’t yet been recorded in a snapshot and that can’t be recovered from Git.
Another useful thing you may want to do is to keep the file in your working tree but remove it from your staging area. In other words, you may want to keep the file on your hard drive but not have Git track it anymore. This is particularly useful if you forgot to add something to your .gitignore file and accidentally staged it, like a large log file or a bunch of .a compiled files. To do this, use the --cached option:
$ git rm --cached README
You can pass files, directories, and file-glob patterns to the git rm command. That means you can do things such as:
$ git rm log/\*.log
Note the backslash (\) in front of the *. This is necessary because Git does its own filename expansion in addition to your shell’s filename expansion. This command removes all files that have the .log extension in the log/ directory. Or, you can do something like this:
$ git rm \*~
This command removes all files whose names end with a ~.

Moving Files.

Unlike many other VCSs, Git doesn’t explicitly track file movement. If you rename a file in Git, no metadata is stored in Git that tells it you renamed the file. However, Git is pretty smart about figuring that out after the fact — we’ll deal with detecting file movement a bit later.
Thus it’s a bit confusing that Git has a mv command. If you want to rename a file in Git, you can run something like:
$ git mv file_from file_to
and it works fine. In fact, if you run something like this and look at the status, you’ll see that Git considers it a renamed file:
$ git mv README.md README
$ git status
On branch main
Your branch is up-to-date with 'origin/main'.
Changes to be committed:
  (use "git reset HEAD <file>..." to unstage)

    renamed:    README.md -> README
However, this is equivalent to running something like this:
$ mv README.md README
$ git rm README.md
$ git add README
Git figures out that it’s a rename implicitly, so it doesn’t matter if you rename a file that way or with the mv command. The only real difference is that git mv is one command instead of three — it’s a convenience function. More importantly, you can use any tool you like to rename a file, and address the add/rm later, before you commit.

Subsection 4.3.3 Viewing the Commit History

After you have created several commits, or if you have cloned a repository with an existing commit history, you’ll probably want to look back to see what has happened. The most basic and powerful tool to do this is the git log command.
These examples use a very simple project called “simplegit”. To get the project, run:
$ git clone https://github.com/schacon/simplegit-progit
When you run git log in this project, you should get output that looks something like this:
$ git log
commit ca82a6dff817ec66f44342007202690a93763949
Author: Scott Chacon <schacon@gee-mail.com>
Date:   Mon Mar 17 21:52:11 2008 -0700

    Change version number

commit 085bb3bcb608e1e8451d4b2432f8ecbe6306e7e7
Author: Scott Chacon <schacon@gee-mail.com>
Date:   Sat Mar 15 16:40:33 2008 -0700

    Remove unnecessary test

commit a11bef06a3f659402fe7563abf99ad00de2209e6
Author: Scott Chacon <schacon@gee-mail.com>
Date:   Sat Mar 15 10:31:28 2008 -0700

    Initial commit
By default, with no arguments, git log lists the commits made in that repository in reverse chronological order; that is, the most recent commits show up first. As you can see, this command lists each commit with its SHA-1 checksum, the author’s name and email, the date written, and the commit message.
A huge number and variety of options to the git log command are available to show you exactly what you’re looking for. If interested, see git-log - Show commit logs
 2 
www.git-scm.com/docs/git-log
for the details, but don’t worry about the overwhelming number of options — be reassured that you don’t need them right now.
Here, we’ll show you only the most popular.
One of the more helpful options is -p or --patch, which shows the difference (the patch output) introduced in each commit. You can also limit the number of log entries displayed, such as using -2 to show only the last two entries.
$ git log -p -2
commit ca82a6dff817ec66f44342007202690a93763949
Author: Scott Chacon <schacon@gee-mail.com>
Date:   Mon Mar 17 21:52:11 2008 -0700

    Change version number

diff --git a/Rakefile b/Rakefile
index a874b73..8f94139 100644
--- a/Rakefile
+++ b/Rakefile
@@ -5,7 +5,7 @@ require 'rake/gempackagetask'
 spec = Gem::Specification.new do |s|
     s.platform  =   Gem::Platform::RUBY
     s.name      =   "simplegit"
-    s.version   =   "0.1.0"
+    s.version   =   "0.1.1"
     s.author    =   "Scott Chacon"
     s.email     =   "schacon@gee-mail.com"
     s.summary   =   "A simple gem for using Git in Ruby code."

commit 085bb3bcb608e1e8451d4b2432f8ecbe6306e7e7
Author: Scott Chacon <schacon@gee-mail.com>
Date:   Sat Mar 15 16:40:33 2008 -0700

    Remove unnecessary test

diff --git a/lib/simplegit.rb b/lib/simplegit.rb
index a0a60ae..47c6340 100644
--- a/lib/simplegit.rb
+++ b/lib/simplegit.rb
@@ -18,8 +18,3 @@ class SimpleGit
     end

 end
-
-if $0 == __FILE__
-  git = SimpleGit.new
-  puts git.show
-end
This option displays the same information but with a diff directly following each entry. This is very helpful for code review or to quickly browse what happened during a series of commits that a collaborator has added.

Subsection 4.3.4 Working with Remotes

To be able to collaborate on any Git project, you need to know how to manage your remote repositories. Remote repositories are versions of your project that are hosted on the Internet or network somewhere. You can have several of them, each of which generally is either read-only or read/write for you. Collaborating with others involves managing these remote repositories and pushing and pulling data to and from them when you need to share work. Managing remote repositories includes knowing how to add remote repositories, remove remotes that are no longer valid, manage various remote branches and define them as being tracked or not, and more. In this section, we’ll cover some of these remote-management skills.
Remote repositories can be on your local machine. It is entirely possible that you can be working with a “remote” repository that is, in fact, on the same host you are. The word “remote” does not necessarily imply that the repository is somewhere else on the network or Internet, only that it is elsewhere. Working with such a remote repository would still involve all the standard pushing, pulling and fetching operations as with any other remote.

Showing Your Remotes.

To see which remote servers you have configured, you can run the git remote command. It lists the shortnames of each remote handle you’ve specified. If you’ve cloned your repository, you should at least see origin — that is the default name Git gives to the server you cloned from:
$ git clone https://github.com/schacon/ticgit
Cloning into 'ticgit'...
remote: Reusing existing pack: 1857, done.
remote: Total 1857 (delta 0), reused 0 (delta 0)
Receiving objects: 100% (1857/1857), 374.35 KiB | 268.00 KiB/s, done.
Resolving deltas: 100% (772/772), done.
Checking connectivity... done.
$ cd ticgit
$ git remote
origin
You can also specify -v, which shows you the URLs that Git has stored for the shortname to be used when reading and writing to that remote:
$ git remote -v
origin  https://github.com/schacon/ticgit (fetch)
origin  https://github.com/schacon/ticgit (push)
If you have more than one remote, the command lists them all. For example, a repository with multiple remotes for working with several collaborators might look something like this.
$ cd grit
$ git remote -v
bakkdoor  https://github.com/bakkdoor/grit (fetch)
bakkdoor  https://github.com/bakkdoor/grit (push)
cho45     https://github.com/cho45/grit (fetch)
cho45     https://github.com/cho45/grit (push)
defunkt   https://github.com/defunkt/grit (fetch)
defunkt   https://github.com/defunkt/grit (push)
koke      git://github.com/koke/grit.git (fetch)
koke      git://github.com/koke/grit.git (push)
origin    git@github.com:mojombo/grit.git (fetch)
origin    git@github.com:mojombo/grit.git (push)
This means we can pull contributions from any of these users pretty easily. We may additionally have permission to push to one or more of these, though we can’t tell that here.

Adding Remote Repositories.

We’ve mentioned and given some demonstrations of how the git clone command implicitly adds the origin remote for you. Here’s how to add a new remote explicitly. To add a new remote Git repository as a shortname you can reference easily, run git remote add <shortname> <url>:
$ git remote
origin
$ git remote add pb https://github.com/paulboone/ticgit
$ git remote -v
origin  https://github.com/schacon/ticgit (fetch)
origin  https://github.com/schacon/ticgit (push)
pb  https://github.com/paulboone/ticgit (fetch)
pb  https://github.com/paulboone/ticgit (push)
Now you can use the string pb on the command line in lieu of the whole URL. For example, if you want to fetch all the information that Paul has but that you don’t yet have in your repository, you can run git fetch pb:
$ git fetch pb
remote: Counting objects: 43, done.
remote: Compressing objects: 100% (36/36), done.
remote: Total 43 (delta 10), reused 31 (delta 5)
Unpacking objects: 100% (43/43), done.
From https://github.com/paulboone/ticgit
 * [new branch]      main     -> pb/main
 * [new branch]      ticgit     -> pb/ticgit
Paul’s main branch is now accessible locally as pb/main — you can merge it into one of your branches, or you can check out a local branch at that point if you want to inspect it. We’ll go over what branches are and how to use them in much more detail in the next subsection on Git Branching.

Fetching and Pulling from Your Remotes.

As you just saw, to get data from your remote projects, you can run:
$ git fetch <remote>
The command goes out to that remote project and pulls down all the data from that remote project that you don’t have yet. After you do this, you should have references to all the branches from that remote, which you can merge in or inspect at any time.
If you clone a repository, the command automatically adds that remote repository under the name “origin”. So, git fetch origin fetches any new work that has been pushed to that server since you cloned (or last fetched from) it. It’s important to note that the git fetch command only downloads the data to your local repository — it doesn’t automatically merge it with any of your work or modify what you’re currently working on. You have to merge it manually into your work when you’re ready.
If your current branch is set up to track a remote branch (see the next section on Git Branching for more information), you can use the git pull command to automatically fetch and then merge that remote branch into your current branch. This may be an easier or more comfortable workflow for you; and by default, the git clone command automatically sets up your local main branch to track the remote main branch (or whatever the default branch is called) on the server you cloned from. Running git pull generally fetches data from the server you originally cloned from and automatically tries to merge it into the code you’re currently working on.
Note: From git version 2.27 onward, git pull will give a warning if the pull.rebase variable is not set. Git will keep warning you until you set the variable.
If you want the default behavior of git (fast-forward if possible, else create a merge commit): git config --global pull.rebase "false"
If you want to rebase when pulling: git config --global pull.rebase "true"

Pushing to Your Remotes.

When you have your project at a point that you want to share, you have to push it upstream. The command for this is simple: git push <remote> <branch>. If you want to push your main branch to your origin server (again, cloning generally sets up both of those names for you automatically), then you can run this to push any commits you’ve done back up to the server:
$ git push origin main
This command works only if you cloned from a server to which you have write access and if nobody has pushed in the meantime. If you and someone else clone at the same time and they push upstream and then you push upstream, your push will rightly be rejected. You’ll have to fetch their work first and incorporate it into yours before you’ll be allowed to push. See the next section on Git Branching for more detailed information on how to push to remote servers.

Section Summary.

At this point, you can do all the basic local Git operations — creating or cloning a repository, making changes, staging and committing those changes, and viewing the history of all the changes the repository has been through. Next, we’ll cover Git’s killer feature: its branching model.

Checkpoint 4.3.2.

What is the correct order of Git commands to initialize a new repository, add a README, and make the first commit?
You have attempted of activities on this page.