5.5. Numbers as Indices¶
Enough about movie budgets, it’s time to budget my time instead. Because I schedule my day to the minute, I like to be able to look up movies by their runtime, so that when I have a spare two hours and 34 minutes, I can find all the movies that would fit precisely in that time slot. (Popcorn-making time is budgeted separately).
Before you start, here is a refresher on the index operator in Pandas.
Selecting Columns of a DataFrame
df[<string>]
gets me a column and returns the Series corresponding to that column.df[<list of strings>]
gets me a bunch of columns and returns a DataFrame.
Selecting Rows of a DataFrame
df[<series/list of Boolean>]
gets me the rows for each element in the list like thing you passed me that isTrue
. However, I think this is confusing and whenever you want to select some rows of a DataFrame you should usedf.loc[]
.df.loc[<series/list of Boolean>]
behaves just likedf[<series/list of Boolean>]
.df.loc[<string>]
uses the non-numeric row index and returns the row(s) for that index value.df.loc[<string1>:<string2>]
uses the non-numeric index and returns a data frame composed of the rows starting with string1 and ending with each string2.df.loc[<list/Series of strings>]
returns a data frame composed of each row from df with an index value that matches a string in the list.
If you use an integer in any of the last four examples, it works just like the
string, but the index values are numeric instead. What is important (and
confusing) about this is that they use the index, not the position. So, if you
create a data frame with 4 rows of some data, it will have an index that is
created by default where the first row starts with 0, the next row is 1 and so
on. However, if you sort the data frame such that the last row becomes the first
and the first row becomes the last, using df.loc[0]
on the sorted data frame
will return the last row.
If you want to be strictly positional, you should use df.iloc[0]
, which will
return the first row regardless of the index value. df.iloc[0:5]
is the same
as doing df.head()
, and df.iloc[[1, 3, 5, 7]]
will return four rows: the
2nd, 4th, 6th and 8th.
import pandas as pd
df = pd.DataFrame({'a':list("pythonrocks"), 'b':[1,2,3,4,5,6,7,8,9,10,11]})
df = df.set_index('a')
df.loc['p':'n']
b | |
---|---|
a | |
p | 1 |
y | 2 |
t | 3 |
h | 4 |
o | 5 |
n | 6 |
OK, but what if we do this:
df.loc['p':'o']
---------------------------------------------------------------------------
KeyError Traceback (most recent call last)
Cell In[2], line 1
----> 1 df.loc['p':'o']
File ~/rs/.venv/lib/python3.11/site-packages/pandas/core/indexing.py:1073, in _LocationIndexer.__getitem__(self, key)
1070 axis = self.axis or 0
1072 maybe_callable = com.apply_if_callable(key, self.obj)
-> 1073 return self._getitem_axis(maybe_callable, axis=axis)
File ~/rs/.venv/lib/python3.11/site-packages/pandas/core/indexing.py:1290, in _LocIndexer._getitem_axis(self, key, axis)
1288 if isinstance(key, slice):
1289 self._validate_key(key, axis)
-> 1290 return self._get_slice_axis(key, axis=axis)
1291 elif com.is_bool_indexer(key):
1292 return self._getbool_axis(key, axis=axis)
File ~/rs/.venv/lib/python3.11/site-packages/pandas/core/indexing.py:1324, in _LocIndexer._get_slice_axis(self, slice_obj, axis)
1321 return obj.copy(deep=False)
1323 labels = obj._get_axis(axis)
-> 1324 indexer = labels.slice_indexer(slice_obj.start, slice_obj.stop, slice_obj.step)
1326 if isinstance(indexer, slice):
1327 return self.obj._slice(indexer, axis=axis)
File ~/rs/.venv/lib/python3.11/site-packages/pandas/core/indexes/base.py:6559, in Index.slice_indexer(self, start, end, step, kind)
6516 """
6517 Compute the slice indexer for input labels and step.
6518
(...)
6555 slice(1, 3, None)
6556 """
6557 self._deprecated_arg(kind, "kind", "slice_indexer")
-> 6559 start_slice, end_slice = self.slice_locs(start, end, step=step)
6561 # return a slice
6562 if not is_scalar(start_slice):
File ~/rs/.venv/lib/python3.11/site-packages/pandas/core/indexes/base.py:6773, in Index.slice_locs(self, start, end, step, kind)
6771 end_slice = None
6772 if end is not None:
-> 6773 end_slice = self.get_slice_bound(end, "right")
6774 if end_slice is None:
6775 end_slice = len(self)
File ~/rs/.venv/lib/python3.11/site-packages/pandas/core/indexes/base.py:6694, in Index.get_slice_bound(self, label, side, kind)
6692 slc = lib.maybe_booleans_to_slice(slc.view("u1"))
6693 if isinstance(slc, np.ndarray):
-> 6694 raise KeyError(
6695 f"Cannot get {side} slice bound for non-unique "
6696 f"label: {repr(original_label)}"
6697 )
6699 if isinstance(slc, slice):
6700 if side == "left":
KeyError: "Cannot get right slice bound for non-unique label: 'o'"
Pandas raises an error because there are two ‘o’s in the index. It doesn’t know which one you mean, first? last? If you argue it should use the last then consider the performance implications if this was a really large index? In that case it would be very time consuming to search the index for the last occurance.
On the other hand, if we sort the index then the last instance can be found quite quickly, and with a sorted index loc will work for this example.
df = df.sort_index()
df.loc['c':'o']
b | |
---|---|
a | |
c | 9 |
h | 4 |
k | 10 |
n | 6 |
o | 5 |
o | 8 |
5.5.1. Practice Questions¶
Create a Series called time_scheduler
that is indexed by runtime and has the
movie’s title as its values. Note that you will need to use sort_index()
in
order to be able to look up movies by their duration. Base yourself on df
rather than budget_df
.
While you’re at it, remove any movie that is less than 10 minutes (you can’t get into it if it’s too short) or longer than 3 hours (who’s got time for that?).
Hint: You may have to use pd.to_numeric
to force the runtimes to be
numbers (instead of numbers in a string).
Here is a simpler example that shows the movies that are 7 minutes long
import pandas as pd
df = pd.read_csv("https://runestone.academy/ns/books/published/httlads/_static/movies_metadata.csv").dropna(axis=1, how='all')
time_scheduler = df.set_index('runtime')
time_scheduler = time_scheduler[['title', 'release_date']]
time_scheduler.loc[7].head()
title | release_date | |
---|---|---|
runtime | ||
7.0 | Balance | 1989-01-01 |
7.0 | Killer Bean 2: The Party | 2000-08-08 |
7.0 | The Employment | 2008-01-01 |
7.0 | Moscow Clad in Snow | 1909-04-09 |
7.0 | Paperman | 2012-11-02 |
Now let’s find all those two-hour-and-34-minute movies.
But what is the 155th shortest movie in this collection?
Lesson Feedback
-
During this lesson I was primarily in my...
- 1. Comfort Zone
- 2. Learning Zone
- 3. Panic Zone
-
Completing this lesson took...
- 1. Very little time
- 2. A reasonable amount of time
- 3. More time than is reasonable
-
Based on my own interests and needs, the things taught in this lesson...
- 1. Don't seem worth learning
- 2. May be worth learning
- 3. Are definitely worth learning
-
For me to master the things taught in this lesson feels...
- 1. Definitely within reach
- 2. Within reach if I try my hardest
- 3. Out of reach no matter how hard I try