Skip to main content\(\usepackage{cancel}
\def\d{\displaystyle}
\def\N{\mathbb N}
\def\B{\mathbf B}
\def\Z{\mathbb Z}
\def\Q{\mathbb Q}
\def\R{\mathbb R}
\def\C{\mathbb C}
\def\U{\mathcal U}
\def\x{\mathbf{x}}
\def\y{\mathbf{y}}
\def\X{\mathcal{X}}
\def\Y{\mathcal{Y}}
\def\pow{\mathcal P}
\def\inv{^{-1}}
\def\st{:}
\def\iff{\leftrightarrow}
\def\Iff{\Leftrightarrow}
\def\imp{\rightarrow}
\def\Imp{\Rightarrow}
\def\isom{\cong}
\def\bar{\overline}
\def\card#1{\left| #1 \right|}
\def\twoline#1#2{\begin{pmatrix}#1 \\ #2 \end{pmatrix}}
\def\mchoose#1#2{
\left.\mathchoice
{\left(\kern-0.48em\binom{#1}{#2}\kern-0.48em\right)}
{\big(\kern-0.30em\binom{\smash{#1}}{\smash{#2}}\kern-0.30em\big)}
{\left(\kern-0.30em\binom{\smash{#1}}{\smash{#2}}\kern-0.30em\right)}
{\left(\kern-0.30em\binom{\smash{#1}}{\smash{#2}}\kern-0.30em\right)}
\right.}
\def\o{\circ}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Appendix C List of Symbols
Symbol |
Description |
Location |
\(\therefore\) |
“therefore” |
Example 1.1.3 |
\(P, Q, R, S, \ldots\) |
propositional (sentential) variables |
Paragraph |
\(\wedge\) |
logical “and” (conjunction) |
Item |
\(\vee\) |
logical “or” (disjunction) |
Item |
\(\neg\) |
logical negation |
Item |
\(K_n\) |
the complete graph on \(n\) vertices |
Paragraph |
\(K_{m,n}\) |
the complete bipartite graph of \(m\) and \(n\) vertices |
Item |
\(C_n\) |
the cycle on \(n\) vertices |
Item |
\(P_n\) |
the path on \(n+1\) vertices |
Item |
\(\chi(G)\) |
the chromatic number of \(G\)
|
Paragraph |
\(\Delta(G)\) |
the maximum degree in \(G\)
|
Paragraph |
\(\chi'(G)\) |
the chromatic index of \(G\)
|
Paragraph |
\(N(S)\) |
the set of neighbors of \(S\)
|
Paragraph |
\(\B^n_k\) |
the set of length \(n\) bit strings with weight \(k\text{.}\)
|
Item |
\((a_n)_{n \in \N}\) |
the sequence \(a_0, a_1, a_2, \ldots\)
|
Paragraph |
\(T_n\) |
the \(n\)th triangular number |
Item |
\(F_n\) |
the \(n\)th Fibonacci number |
Exercise 2 |
\(\Delta^k\) |
the \(k\)th differences of a sequence |
Paragraph |
\(\emptyset\) |
the empty set |
Item |
\(\U\) |
universe set (domain of discourse) |
Item |
\(\N\) |
the set of natural numbers |
Item |
\(\Z\) |
the set of integers |
Item |
\(\Q\) |
the set of rational numbers |
Item |
\(\R\) |
the set of real numbers |
Item |
\(\pow(A)\) |
the power set of \(A\)
|
Item |
\(\{, \}\) |
braces, to contain set elements. |
Item |
\(\st\) |
“such that” |
Item |
\(\in\) |
“is an element of” |
Item |
\(\subseteq\) |
“is a subset of” |
Item |
\(\subset\) |
“is a proper subset of” |
Item |
\(\cap\) |
set intersection |
Item |
\(\cup\) |
set union |
Item |
\(\times\) |
Cartesian product |
Item |
\(\setminus\) |
set difference |
Item |
\(\bar{A}\) |
the complement of \(A\)
|
Item |
\(\card{A}\) |
cardinality (size) of \(A\)
|
Item |
\(A\times B\) |
the Cartesian product of \(A\) and \(B\)
|
Paragraph |
\(f(A)\) |
the image of \(A\) under \(f\)
|
Paragraph |
\(f\inv(B)\) |
the inverse image of \(B\) under \(f\)
|
Paragraph |