Skip to main content
Logo image

Appendix C List of Symbols

Symbol Description Location
\(\therefore\) “therefore” Example 1.1.3
\(P, Q, R, S, \ldots\) propositional (sentential) variables Paragraph
\(\wedge\) logical “and” (conjunction) Item
\(\vee\) logical “or” (disjunction) Item
\(\neg\) logical negation Item
\(K_n\) the complete graph on \(n\) vertices Paragraph
\(K_{m,n}\) the complete bipartite graph of \(m\) and \(n\) vertices Item
\(C_n\) the cycle on \(n\) vertices Item
\(P_n\) the path on \(n+1\) vertices Item
\(\chi(G)\) the chromatic number of \(G\) Paragraph
\(\Delta(G)\) the maximum degree in \(G\) Paragraph
\(\chi'(G)\) the chromatic index of \(G\) Paragraph
\(N(S)\) the set of neighbors of \(S\) Paragraph
\(\B^n_k\) the set of length \(n\) bit strings with weight \(k\text{.}\) Item
\((a_n)_{n \in \N}\) the sequence \(a_0, a_1, a_2, \ldots\) Paragraph
\(T_n\) the \(n\)th triangular number Item
\(F_n\) the \(n\)th Fibonacci number Exercise 2
\(\Delta^k\) the \(k\)th differences of a sequence Paragraph
\(\emptyset\) the empty set Item
\(\U\) universe set (domain of discourse) Item
\(\N\) the set of natural numbers Item
\(\Z\) the set of integers Item
\(\Q\) the set of rational numbers Item
\(\R\) the set of real numbers Item
\(\pow(A)\) the power set of \(A\) Item
\(\{, \}\) braces, to contain set elements. Item
\(\st\) “such that” Item
\(\in\) “is an element of” Item
\(\subseteq\) “is a subset of” Item
\(\subset\) “is a proper subset of” Item
\(\cap\) set intersection Item
\(\cup\) set union Item
\(\times\) Cartesian product Item
\(\setminus\) set difference Item
\(\bar{A}\) the complement of \(A\) Item
\(\card{A}\) cardinality (size) of \(A\) Item
\(A\times B\) the Cartesian product of \(A\) and \(B\) Paragraph
\(f(A)\) the image of \(A\) under \(f\) Paragraph
\(f\inv(B)\) the inverse image of \(B\) under \(f\) Paragraph