Skip to main content \(\newcommand{\circledNumber}[1]{\boxed{#1}}
\newcommand{\IR}{\mathbb{R}}
\newcommand{\IC}{\mathbb{C}}
\renewcommand{\P}{\mathcal{P}}
\renewcommand{\Im}{\operatorname{Im}}
\newcommand{\RREF}{\operatorname{RREF}}
\newcommand{\vspan}{\operatorname{span}}
\newcommand{\setList}[1]{\left\{#1\right\}}
\newcommand{\setBuilder}[2]{\left\{#1\,\middle|\,#2\right\}}
\newcommand{\unknown}{\,{\color{gray}?}\,}
\newcommand{\drawtruss}[2][1]{
\begin{tikzpicture}[scale=#1, every node/.style={scale=#1}]
\draw (0,0) node[left,magenta]{C} --
(1,1.71) node[left,magenta]{A} --
(2,0) node[above,magenta]{D} -- cycle;
\draw (2,0) --
(3,1.71) node[right,magenta]{B} --
(1,1.71) -- cycle;
\draw (3,1.71) -- (4,0) node[right,magenta]{E} -- (2,0) -- cycle;
\draw[blue] (0,0) -- (0.25,-0.425) -- (-0.25,-0.425) -- cycle;
\draw[blue] (4,0) -- (4.25,-0.425) -- (3.75,-0.425) -- cycle;
\draw[thick,red,->] (2,0) -- (2,-0.75);
#2
\end{tikzpicture}
}
\newcommand{\trussNormalForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, blue,->] (4,0) -- (3.5,0.5);
}
\newcommand{\trussCompletion}{
\trussNormalForces
\draw [thick, magenta,<->] (0.4,0.684) -- (0.6,1.026);
\draw [thick, magenta,<->] (3.4,1.026) -- (3.6,0.684);
\draw [thick, magenta,<->] (1.8,1.71) -- (2.2,1.71);
\draw [thick, magenta,->] (1.6,0.684) -- (1.5,0.855);
\draw [thick, magenta,<-] (1.5,0.855) -- (1.4,1.026);
\draw [thick, magenta,->] (2.4,0.684) -- (2.5,0.855);
\draw [thick, magenta,<-] (2.5,0.855) -- (2.6,1.026);
}
\newcommand{\trussCForces}{
\draw [thick, blue,->] (0,0) -- (0.5,0.5);
\draw [thick, magenta,->] (0,0) -- (0.4,0.684);
\draw [thick, magenta,->] (0,0) -- (0.5,0);
}
\newcommand{\trussStrutVariables}{
\node[above] at (2,1.71) {\(x_1\)};
\node[left] at (0.5,0.866) {\(x_2\)};
\node[left] at (1.5,0.866) {\(x_3\)};
\node[right] at (2.5,0.866) {\(x_4\)};
\node[right] at (3.5,0.866) {\(x_5\)};
\node[below] at (1,0) {\(x_6\)};
\node[below] at (3,0) {\(x_7\)};
}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Section 2.9 Homogeneous Linear Systems (VS9)
Learning Outcomes
Subsection 2.9.1 Class Activities
Definition 2.9.1 .
A homogeneous system of linear equations is one of the form:
\begin{alignat*}{5}
a_{11}x_1 &\,+\,& a_{12}x_2 &\,+\,& \dots &\,+\,& a_{1n}x_n &\,=\,& 0 \\
a_{21}x_1 &\,+\,& a_{22}x_2 &\,+\,& \dots &\,+\,& a_{2n}x_n &\,=\,& 0 \\
\vdots& &\vdots& && &\vdots&&\vdots\\
a_{m1}x_1 &\,+\,& a_{m2}x_2 &\,+\,& \dots &\,+\,& a_{mn}x_n &\,=\,& 0
\end{alignat*}
This system is equivalent to the vector equation:
\begin{equation*}
x_1 \vec{v}_1 + \cdots+x_n \vec{v}_n = \vec{0}
\end{equation*}
and the augmented matrix:
\begin{equation*}
\left[\begin{array}{cccc|c}
a_{11} & a_{12} & \cdots & a_{1n} & 0\\
a_{21} & a_{22} & \cdots & a_{2n} & 0\\
\vdots & \vdots & \ddots & \vdots & \vdots\\
a_{m1} & a_{m2} & \cdots & a_{mn} & 0
\end{array}\right]
\end{equation*}
Activity 2.9.2 .
Note that if \(\left[\begin{array}{c} a_1 \\ \vdots \\ a_n \end{array}\right] \) and \(\left[\begin{array}{c} b_1 \\ \vdots \\ b_n \end{array}\right] \) are solutions to \(x_1 \vec{v}_1 + \cdots+x_n \vec{v}_n = \vec{0}\) so is \(\left[\begin{array}{c} a_1 +b_1\\ \vdots \\ a_n+b_n \end{array}\right] \text{,}\) since
\begin{equation*}
a_1 \vec{v}_1+\cdots+a_n \vec{v}_n = \vec{0}
\text{ and }
b_1 \vec{v}_1+\cdots+b_n \vec{v}_n = \vec{0}
\end{equation*}
implies
\begin{equation*}
(a_1 + b_1) \vec{v}_1+\cdots+(a_n+b_n) \vec{v}_n = \vec{0} .
\end{equation*}
Similarly, if \(c \in \IR\text{,}\) \(\left[\begin{array}{c} ca_1 \\ \vdots \\ ca_n \end{array}\right] \) is a solution. Thus the solution set of a homogeneous system is...
A basis for \(\IR^n\text{.}\)
A subspace of \(\IR^n\text{.}\)
The empty set.
Activity 2.9.3 .
Consider the homogeneous system of equations
\begin{alignat*}{5}
x_1&\,+\,&2x_2&\,\,& &\,+\,& x_4 &=& 0\\
2x_1&\,+\,&4x_2&\,-\,&x_3 &\,-\,&2 x_4 &=& 0\\
3x_1&\,+\,&6x_2&\,-\,&x_3 &\,-\,& x_4 &=& 0
\end{alignat*}
(a)
Find its solution set (a subspace of \(\IR^4\) ).
(b)
Rewrite this solution space in the form
\begin{equation*}
\setBuilder{ a \left[\begin{array}{c} \unknown \\ \unknown \\ \unknown \\ \unknown\end{array}\right] + b \left[\begin{array}{c} \unknown \\ \unknown \\ \unknown \\ \unknown \end{array}\right] }{a,b \in \IR}.
\end{equation*}
(c)
Rewrite this solution space in the form
\begin{equation*}
\vspan\left\{\left[\begin{array}{c} \unknown \\ \unknown \\ \unknown \\ \unknown\end{array}\right], \left[\begin{array}{c} \unknown \\ \unknown \\ \unknown \\ \unknown \end{array}\right]\right\}.
\end{equation*}
Fact 2.9.4 .
The coefficients of the free variables in the solution set of a linear system always yield linearly independent vectors.
Thus if
\begin{equation*}
\setBuilder{
a \left[\begin{array}{c} -2 \\ 1 \\ 0 \\ 0\end{array}\right] +
b \left[\begin{array}{c} -1 \\ 0 \\ -4 \\ 1 \end{array}\right]
}{
a,b \in \IR
} = \vspan\left\{ \left[\begin{array}{c} -2 \\ 1 \\ 0 \\ 0\end{array}\right],
\left[\begin{array}{c} -1 \\ 0 \\ -4 \\ 1 \end{array}\right] \right\}
\end{equation*}
is the solution space for a homogeneous system, then
\begin{equation*}
\setList{
\left[\begin{array}{c} -2 \\ 1 \\ 0 \\ 0\end{array}\right],
\left[\begin{array}{c} -1 \\ 0 \\ -4 \\ 1 \end{array}\right]
}
\end{equation*}
is a basis for the solution space.
Activity 2.9.5 .
Consider the homogeneous system of equations
\begin{alignat*}{5}
2x_1&\,+\,&4x_2&\,+\,& 2x_3&\,-\,&4x_4 &=& 0 \\
-2x_1&\,-\,&4x_2&\,+\,&x_3 &\,+\,& x_4 &=& 0\\
3x_1&\,+\,&6x_2&\,-\,&x_3 &\,-\,&4 x_4 &=& 0
\end{alignat*}
Find a basis for its solution space.
Activity 2.9.6 .
Consider the homogeneous vector equation
\begin{equation*}
x_1 \left[\begin{array}{c} 2 \\ -2 \\ 3 \end{array}\right]+
x_2 \left[\begin{array}{c} 4 \\ -4 \\ 6 \end{array}\right]+
x_3 \left[\begin{array}{c} 2 \\ 1 \\ -1 \end{array}\right]+
x_4 \left[\begin{array}{c} -4 \\ 1 \\ -4 \end{array}\right]=
\left[\begin{array}{c} 0 \\ 0 \\ 0 \end{array}\right]
\end{equation*}
Find a basis for its solution space.
Activity 2.9.7 .
Consider the homogeneous system of equations
\begin{alignat*}{5}
x_1&\,-\,&3x_2&\,+\,& 2x_3 &=& 0\\
2x_1&\,+\,&6x_2&\,+\,&4x_3 &=& 0\\
x_1&\,+\,&6x_2&\,-\,&4x_3 &=& 0
\end{alignat*}
Find a basis for its solution space.
Subsection 2.9.2 Videos
Figure 22. Video: Polynomial and matrix calculations
Subsection 2.9.5 Mathematical Writing Explorations
Exploration 2.9.9 .
An \(n \times n\) matrix \(M\) is non-singular if the associated homogeneous system with coefficient matrix \(M\) is consistent with one solution. Assume the matrices in the writing explorations in this section are all non-singular.
Prove that the reduced row echelon form of \(M\) is the identity matrix.
Prove that, for any column vector \(\vec{b} = \left[\begin{array}{c}b_1\\b_2\\ \vdots \\b_n \end{array}\right]\text{,}\) the system of equations given by \(\left[\begin{array}{c|c}M & \vec{b}\end{array}
\right]\) has a unique solution.
Prove that the columns of \(M\) form a basis for \(\mathbb{R}^n\text{.}\)
Prove that the rank of \(M\) is \(n\text{.}\)
Subsection 2.9.6 Sample Problem and Solution
Sample problem Example B.1.13 .
You have attempted
of
activities on this page.