We use \(\ell\) for the length of the pen and \(w\) for the width, in feet. We know that the perimeter must be \(500\) feet so that gives us
\begin{equation*}
2\ell+2w=500
\end{equation*}
First we solve for the length:
\begin{align*}
2\ell+2w\amp=500\\
2\ell\amp=500-2w\\
\ell\amp=250-w
\end{align*}
Now we can write a formula for the rectangleβs area:
\begin{align*}
A\amp=\ell\cdot w\\
A\amp=(250-w)\cdot w\\
A\amp=250w-w^2\\
A\amp=-w^2+250w
\end{align*}
The area is a quadratic expression so we can identify \(a=-1\) and \(b=250\) and find the vertex:
\begin{align*}
h\amp=-\frac{(\substitute{250})}{2(\substitute{-1})}\\
\amp=\frac{250}{2}\\
\amp=125
\end{align*}
Since the width of the rectangle that will maximize area is 125 ft, we can find the length using our expression:
\begin{align*}
\ell\amp=250-w\\
\amp=250-\substitute{125}\\
\amp=125
\end{align*}
To find the maximum area we can either substitute the width into the area formula or multiply the length by the width:
\begin{align*}
A\amp=\ell\cdot w\\
A\amp=125\cdot 125\\
A\amp=15{,}625
\end{align*}
The maximum area that Kali can get is \(15{,}625\) square feet if she builds her pen to be a square with a length and width of \(125\) feet.