Since \(f\) is exponentially bounded, there exist constants \(M > 0\text{,}\) \(a \in \mathbb{R}\text{,}\) and \(T \ge 0\) such that
\begin{equation*}
|f(t)| \le M e^{at} \quad \text{for } t \ge T.
\end{equation*}
For \(t \ge T\text{,}\) we have
\begin{equation*}
|e^{-st} f(t)| \le M e^{-(s-a)t}.
\end{equation*}
If \(s > a\text{,}\) the integral
\begin{equation*}
\int_T^\infty M e^{-(s-a)t}\,dt
\end{equation*}
converges. By the comparison test,
\begin{equation*}
\int_T^\infty e^{-st} f(t)\,dt
\end{equation*}
also converges absolutely. Since \(f\) is piecewise continuous on \([0,T]\text{,}\)
\begin{equation*}
\int_0^T e^{-st} f(t)\,dt
\end{equation*}
is finite. Therefore,
\begin{equation*}
\int_0^\infty e^{-st} f(t)\,dt
\end{equation*}
exists for all \(s > a\text{.}\) Hence the Laplace transform \(\mathcal{L}(f)(s)\) exists.